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GENERAL STRUCTURE OF THIS TUTORIAL

Some Ground Rules: Laying the Basis
Motivation and Framework: Endotype Discovery
Focus: Learning by Example

Basic principles of Causality

Tips for Team Science



ELEMENTS OF THE PROJECT CYCLE

Understand the problem
Understand the data
Prepare the data

Evaluate Algorithms - Cross Validation

Finalise Models



WARNING: LITTLE FOGUS ON DEEP LEARNING

Deep Leaning gives excellent results on web-scale and image datasets

DL is very data hungry
Health data collection is (generally) expensive

Difficult to represent uncertainty
Interpretability

Model-Based approaches: Focus on hypothesis generating



RANDOMISED CONTROL TRIAL: TRADITIONAL
APPROACH TO EVALUATING TREATMENT

- m

Population is split into 2 Outcomes for both

it




NEED FOR PERSONALIZED TREATMENT AND
MANAGEMENT STRATEGIES

Drug NOT toxic Drug toxic but
and beneficial Patient Group NOT beneficial
® e

Drug toxic but Drug NOT toxic and
beneficial NOT beneficial



GENETICS: LOW YIELD
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ENDOTYPE DISCOVERY: THE GRAND GHALLENGE

To identify subgroups of complex disease risk or treatment
outcome explained by a distinctive underlying mechanism
("endotypes’)

Foundation of Stratified Medicine - seeking better-targeted
Interventions



"We adore chaos
because we love to
oroduce order’

M.C. ESCHER
ORDER AND CHAOS, 1950




GENERALIZED FRAMEWORK FOR
IDENTIFYING DISEASE ENDOTYPES

Parsimonious
description of the
data inferred from
what is observed

Observed
Feature 1

eeeeeeee

eeeeeeee

eeeeeeee

eeeeeeeeee




PROBABILISTIC PROGRAMMING:
TOOL FOR IDENTIFYING LATENT STRUCTURE

Probabilistic reasoning system The evidence contains
The probabilistic model specific information

about a situation

expresses general
knowledge about a
situation

—_—

The inference algorithm
uses the model to
answer queries given -\

evidence

v
are framed as
probabilities of different /

The answers to queries

The queries express the
things that will help you
make a decision

ouftcomes
The basic components of a probabilistic reasoning system

Adapted from Pfeffer, Avi. "Practical probabilistic programming." International Conference on Inductive Logic Programming. Springer Berlin Heidelberg, 2010.



THE ASTHMA DOMAIN

Post-natal Factors

- B

Pre-natal
Factors

Max Attainable
Lung Function

Bronchial

|
Hyperresponsiveness
“twitchiness”




HETEROGENEITY IN ASTHMA

Phenotypes: ObservablefManifestations of Disease

Allergy

in 5 5a gl

Subtypes: Different Diseases With Different Causes




THE PROBLEM SPACE

To define asthma subgroups (endotypes) in a population-based birth
cohort study based on both parental reports and primary care
consultation of wheeze within the first 8 years of life

To identify distinct genetic and physiological markers which are
associated with these phenotypes




MODELLING STRATEGY FOR WHEEZE SUBTYPES

GP Record Parent
Observation Observation
of wheeze of wheeze
t=1,2,3,..,8

Child i=1,...,1185

X = age; xg; rater at fime j; x3; is gender Pr(c, = k) is multinomial over k classes and independent across children



ASTHMA: A HETEROGENEOUS PHENOMENON

S / —
@ /r 5 distinct latent classes
: / with different genetic
¥ / : ' and environmental
> characteristics

0 1 2 3 4 5 6 7 8
Age (years)

Early-onset Wheeze (n=162)
Persistent Controlled Wheeze (n=155)

No Wheeze (n=632)
Late-onset Wheeze(n=198)
=== Persistent Troublesome Wheeze (n=38)
Belgrave, Danielle CM, et al. "Joint modeling of parentally reported and physician-confirmed wheeze identifies children with persistent troublesome wheezing." Journal of Allergy and Clinical Immunology

132.3 (2013): 575-583.



ASTHMA SUBTYPE-DEPENDENT RESPONSE TO
TREATMENT
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DISTINCT GENETIC PROFILE OF WHEEZE SUBTYPES

Persistent Wheeze : : Persistent Wheeze

Risk of hospitalization
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18 21

Chromosome

Bannelykke, Klaus, et al. "A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations.” Nature genetics 46.1 (2014): 51-55.



MOTIVATING ENDOTYPE DISCOVERY

Endotype discovery may have major implications for
Refining disease diagnosis

|dentifying biomarkers that allow us to
understand underlying disease mechanisms

More personalised treatment and management
strategies of disease




RECEIVED WISDOM: CAUSALITY IN ALLERGY

Progression of allergy:
Eczema -> Asthma -> Rhinitis

Symptoms Causally Linked

Relative prevalence of symptoms according to age

Prevention strategy:
(many children exhibit symptoms simultaneously).

Target children with eczema to
reduce progression to asthma

and rhinitis



OBJECTIVE

o capture disease heterogeneity
and encapsulate different patterns of
symptom progression during
childhood using a probabilistic
modelling approach.




THE DATA DOMAIN
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HIDDEN MARKOV MODEL 1: INDEPENDENT PROFILES

Eczema

Class

Wheeze
Class

Rhinitis
Class

Children (n=9801)

Latent Class
Disease Profile

Manchester Asthma and Allergy

Study
1184 subjects

Avon Longitudinal Study of
Parents and Children
8665 subjects



HIDDEN MARKOV MODEL 2: “ALLERGIC MARCH"

Eczema

Class

Wheeze
Class

Rhinitis
Class

Children (n=9801)

Latent Class
Disease Profile




MODEL 3: LONGITUDINAL LATENT DISEASE PROFILE




INFER.NET INFERENCE ARCHITECTURE

Observed values
h Probabilistic
program
| | Infer.NET Inference Engine

& €3 E3

(data, priors)

Probability
distributions



SENSITIVITY TO PRIORS

Number of Inferred Classes
5 6

-47109*
-47334%
-46424%

-46431*




POSTERIOR PROBABILITY OF CLASS MEMBERSHIP

2 3 4 5 6 7 8
0.924 0.783 0.805 0.805 0.756 0.805 0.846




DISAGGREGATING SYMPTOM HETEROGENEITY

. . \ Persistent Eczema and Persistent Eczema with
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From: Belgrave et al. Developmental Profiles of Eczema, Wheeze, and Rhinitis: Two Population-Based Birth Cohort Studies. PlosMedicine 2014



DISSECTING THE ATOPIC MARCH

The A||ergic March reflects oatterns at the population level,
rather than the natural covariance of symptoms within
individuals' life courses

Developmental profiles of — Asthma — are
he’rerogeneous

On|r a small proportion of children follow a trajectory profile
similar to that of the atopic march



ANTIBIOTIC RESISTANCE: A GLOBAL PROBLEM
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Dosed up: could excessive prescription of antibiotics be hampering children’s ability to fight disease?

Stop the killing of
beneflclal bacterla

Loncerns about antib
O protectve flor:

Average child in developed countries tak

Blaser. 2011. Nafture. 4T




Factors affecting Early Impact of Early

Respiratory Colonisation Respiratory Colonisation




OPERATIONAL TAXONOMIC UNIT (OTU)

D53~DRun8~24moS D283~ DRunl15"24moS DI173"DRun15~24moSw D131"DRun15"24moSw D225 DRun15"24moS D98~DRun15~24moSw

#OTU ID
New.ReferenceOTU75
New.ReferenceOTU76
New.ReferenceOTU77
New.ReferenceOTU8
New.ReferenceOTU9
New.ReferenceOTUO
New.ReferenceOTUI1
New.ReferenceOTU?2
New.ReferenceOTU113
New.ReferenceOTU4

superkingdom phylum

Bacteria

Bacteria
Bacteria
Bacteria
Bacteria
Bacteria
Bacteria
Bacteria
Bacteria
Bacteria

wab

Bacteroidetes
Firmicutes
Actinobacteria
Bacteroidetes
Fusobacteria
Proteobacteria
Firmicutes
Proteobacteria
Bacteroidetes
Proteobacteria

wda bS

Class

Bacteroidia

Clostridia
Actinobacteria
Bacteroidia
Fusobacteriia
Gommopro’reoboc’rerio
Negativicutes
Gommopro’reoboc’rerio
Bacteroidia
Betaproteobacteria

GbS

oro|er

Bacteroidales
Clostridiales
Actinomycetales
Bacteroidales
Fusobacteriales
Pasteurellales
Selenomonadales
Pasteurellales
Bacteroidales
Neisseriales

GbS

family
Prevotellaceae
Lachnospiraceae
Actinomycetaceae
Porphyromonadaceae
Leptotrichiaceae
Pasteurellaceae
Veillonellaceae
Pasteurellaceae
Porphyromonadaceae
Neisseriaceae

OTU's are used to categorize bacteria based on sequence similarity.

WCIbS

GbS

Yoxro0

o OO OO0OO

genus

Prevotella
Oribacterium
Actinomyces
Porphyromonas
uncultured
Haemophilus
Veillonella
Actinobacillus
Porphyromonas
Neisseria

species
uncultured bacterium
uncultured bacterium
uncultured bacterium
uncultured bacterium
uncultured bacterium
uncultured bacterium
uncultured bacterium
uncultured bacterium
uncultured bacterium
uncultured bacterium
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CORRELATION NETWORK ANALYSIS
EVOLUTION OF MICROBIOME PROFILE OVER TIME

Hetwork 6 weeks Hetwork 3 months Network 4 months Hetwork 6 months
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MNetwork 9 months Hetwork 12 months Hetwork 18 months
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MICROBIOME PROFILE

AND RESPIRATORY DISEASE

Bacterial Composition of 1,021
Nasopharyngeal Aspirates Collected

from 234 Infants during Periods of
Respiratory Health and Disease

Clustering based on the 6 most
common genera

Relative abundance

Healthy samples
2 months 6 months 12 months
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.
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R

Staphylococcus (n = 124)

ol i

R 21 3 47 62
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Teo, Shu Mei, et al. "The infant nasopharyngeal microbiome impacts severity of lower respiratory

Relative abundance

M Phylum

] Genus

Number of samples

Acute respiratory infections (ARI)

< MPG

Moraxella
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Staphylococcus
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Streptococcus
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for virus
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infection and risk of asthma development." Cell host & microbe 17.5 (2015): 704-715.



AN AGE-OLD PROBLEM...

12.7 mi”ion oeople discover
they have cancer each year

1.6 mi”ion oeople die from
cancer each year

30 - 40% of these deaths

can be preven’red

GOP Makeover / Drone Morality/ The Marriage Test &5°

*Yes, it's now possible—thanks to
new cancer dream teams that are
delivering better results faster
BY BILL SAPORITO




THE PROBLEM WITH GANGER

Lack of tools for early detection
and diagnosis

Cancer cells, even within the
same tumor, are
heterogeneous—that is,
differences exist between the
individual cells.




DEEP LEARNING TO ENHANCE CANCER DIAGNOSIS

Aim: To determine the difference between cancerous gene
expression in tumour cells vs normal, non-cancerous tissues

to obtain better insight into the disease pathology

To create a genero|izob|e framework for new cancer types
without the reolesign of new features

Using Deep Learning to Enhance Cancer Diagnosis and Classification. Rasool Fakoor, Faisal Lahdak, Azade Nazi, Manfred Huber. ICML 2013, WHEALTH workshop, Atlanta, GA, 2013.



CANGER DIAGNOSIS AND CLASSIFICATION

Gene Expression Profile
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Using Deep Learning to Enhance Cancer Diagnosis and Classification. Rasool Fakoor, Faisal Lahdak, Azade Nazi, Manfred Huber. ICML 2013, WHEALTH workshop, Atlanta, GA, 2013.



DELAYED INTENSIVE CARE UNIT (ICU) ADMISSION

Delayed ICU admission is correlated with mortality

|gnoring correlations among vital signs, history and patient
heterogeneity

Risk scoring methodology can confer huge clinical and social benefits
on a massive number of critically ill inpatients who exhibit adverse
outcomes including, but not limited to, cardiac arrests, respiratory

arrests, and septic shocks.



A MULTI-TASK GAUSSIAN
PROCESS MODEL FOR

mformation Clinical statu
1R R LA I 8 >

Results reflect the Importance of odop’ring the Function valued latent

multi-task GP

concepfts of personchzed medicine in critical

care settings; significant accuracy and " My ‘l
timeliness gains can be achieved by accounting
for the patients' heterogeneity. ——— @

"
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Initial epoch
Alaa, Ahmed M., et al. "Personalized risk scoring for critical care prognosis using mixtures of L
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BRADFORD-HILL PRINCGIPLES OF CAUSALITY

Plausibility Consistency Temporality

Change in

Strength Specificity Rick Foct
isk Factor



MODERATOR

A variable that changes the impact of one variable on
another

Predictor I > Outcome

Moderator



MEDIATOR

A mechanism by which one variable affects another

variable
Mediator

Predictor ~ Outcome
(Independent Variable) Dependent Variable




TESTING MEDIATION

Step 1: Independent Variable > Dependent Variable
Step 2: Independent Variable > Mediator
Step 3: Mediator » Dependent Variable

Step 4: Effect of Independent Variable on Dependent Variable is
significantly reduced by controlling for the mediator:

Sobel (1982) ( )
Goodman (1960) On the exact variance of products. Journal of the American Statistical Association, 55, 708-713.


http://www.unc.edu/~preacher/sobel/sobel.htm

INSTRUMENTAL VARIABLE (V) ESTIMATION

Allows for consistent, unbiased estimation when the explanatory
variables (covariates) are correlated with the error term in a
regression model

Used to estimate causal relationships when controlled
experiments are not feasible or when a treatment is not
successfully delivered to every unit in a randomized experiment



INSTRUMENTAL VARIABLE (V) ESTIMATION

Scenarios:

Change in the dependent variable change the value of at least one
of the covariates (reverse causation)

Omitted variables that affect both the dependent and independent
variables

Covariates are subject to measurement error



MEDIATION WITH INSTRUMENTAL \IARIABL%
_ o
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error




INSTRUMENTAL VARIABLE (V) ESTIMATION

An instrumental variable is:
1. Strongly predictive of the mediating variable
2. Has no direct effect on the outcome except Jrhrough the mediator
3. Does not share common causes with the outcome

Rondomisa’rion, where dvoi|ob|e, often satisfies this criteria when
accounting for depor’rures from randomised treatment.

"Correlation and Causality” by David Kenny (1979)



EFFICACY AND MECHANISM EVALUATION:
CAUSAL FRAMEWORK FOR INVESTIGATING ‘
WHO MEDICATIONS WORK FOR
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EFFICACY AND MECHANISM EVALUATION:

CANGER ‘




ML IN HEALTH: THERE IS STILL A LOT THAT NEEDS
T0 BE DONE...

"There is less attention paid to the more immediate problem of
how we prevent these orograms from omp|hcying the inequah’ries
of our past and affecting the most vulnerable members of our
society.

https://www.theguardian.com/inequality/2017/aug/08/rise-of-the-racist-robots-how-ai-is-learning-all-our-worst-impulses



ML IN HEALTH: THERE IS STILL A LOT THAT NEEDS
T0 BE DONE...

WORLD
TUBERCUL@SIS
DAY




The key to
collaboration is
effective
communication

REFLECTIONS ON TEAM SCIENCE

ave et al. Disaggregating asthma: Big investigation versus big data. Journal of Allergy and



Think deeply about the clinical CONTEXT

context. Find solutions which

are specific to the problem. —

Good science is about merging
different schools of thought for
developing the bigger picture.

Data driven approach + Domain Knowledge = Holistic Approach to science

REFLECTIONS ON TEAM SCIENCE

Belgrave, Danielle, Angela Simpson, and Adnan Custovic. "Challenges in interpreting wheeze phenotypes: the clinical implications of statistical learning techniques." (2014): 121-123.



Principled epidemiology +
Biostatistics +

Machine Learning
= Heuristic Blend of Tools for understanding

causality and clinical relevance

REFLECTIONS ON TEAM SCIENCE

Belgrave, Danielle, and Adnan Custovic. "The importance of being earnest in epidemiology." Acta Paediatrica 105.12 (2016): 1384-1386..



FROM INFORMATION TO KNOWLEDGE

. Team Science: Discoveries about healthcare, not hypothesised a priori, have been

made by experts explaining structure learned from data by algorithms tuned by
those experts

2. Heuristic blend of biostatistics and machine-learning reveals more than either
method individually

3. An ML Qpprooch to extracting know|eo|ge from inform
persistent integration of
Data

Methods
Expertise
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THE ROAD AHEAD...
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Filtered and normalized datasets

Input

datasets #

Data transformation

. < Repeated measures (] Pathway modules
Preprocessing

O PCA

Data (J Sparse PCA

Exploration
e - I
0 20 40
PC1:153|:
iIscriminant
analysis

DIABLO ==p Multi-omic biomarker panel

Classification performance
Sample plots

Correlation circles

Circos plots

Heatmaps




APPROXIMATING TRANSITION STATES AND GLASS

MEMBERSHIP

Assumptions:

Children in the same class have
similar transitions of symptoms
over time

public ClusterSimpleChain(int numYears)

probState0 = Variable.Array<double>(k).Named( é)robStateO”
probStateOPrior = Variable.Array<Beta>(k).Named("probStateOPrior");
probStateO[k] = Variable<double>. Random(probStateOPrlor[k])

1{:or (inty = 0; y < numVYears; y++)

#if clusterQ
Q T{ ] Variable. ArraySVarlabIe Array<doub|e>} ; k). Namedz”Q T" +y}
Flyl = Variable.Array(Variable ArraY<doubIe> k).Named("Q_F" +vy

QTPrlorArr[y] Variable.Array(Variable.Array<Beta> s)
k).Named("QTPriorArr" +y);

QFPriorArr[y] = Variable. Array(Variable.Array<Beta>(s),
k).Named("QFPriorArr" +y);

Q T{ ”k” } Variable<double>. Random{QTPrlor[ ”k”s“,

Flyllk Variable<double>.Random(QFPrior|y|[k ;

S

Variable. Array<doub|e>§ Z.Namedé' QT"+ y}
Variable. ArraY<doubIe> Named("Q_F" +

QTPrlorArr[y] Variable.Array<Beta>(s).Named("QTPriorArr" +y§;

QFPriorArrly

-

Q_Fly

Helse

Variable.Array<Beta>(s).Named("QFPriorArr" +y
Variable<double>. Random{QTPrlorArr[y” B,
Variable<double>.Random(QFPriorArrly|(s]);

#endif



