Deep Generative Models

Ulrich Paquet
DeepMind

2-minute exercise

Talk to your friend next to you, and tell him or her everything you can about this data set:

Data

Data manifold

We can capture most of the variability in the data through one number

$$
z^{(n)}=1 \text { or } 2,3,4
$$

for each image n, even though each image is 16 dimensional

How?

How?

1. \quad Take $z^{(n)}=2$

2. Draw bar in column 2 of image
3. Et voila! You have $x^{(n)}$
$z^{(n)}=2$

$x^{(n)}$

How?

1. Take $z^{(n)}=2$

2. Draw bar in column 2 of image
3. Et voila! You have $x^{(n)}$
$z^{(n)}=2$

Maybe some neural network, that takes z as input, and outputs a 16-dimensional vector x...?

$x^{(n)}$

3-minute exercise

Write or draw a function (like a multi-layer perceptron) that takes $z \in \mathbb{R}$ and produces \boldsymbol{X}

Is your input one-dimensional?
Is your output 16-dimensional?
Identify all the "tunable" parameters $\boldsymbol{\theta}$ of your function

$$
z^{(n)}=2
$$

$$
x^{(n)}
$$

3-minute exercise

Write or draw a function (like a multi-layer perceptron) that takes $z \in \mathbb{R}$ and produces \boldsymbol{X}

Is your input one-dimensional?
Is your output 16-dimensional?
Identify all the "tunable" parameters $\boldsymbol{\theta}$ of your function

Data manifold

The 16-dimensional images live on a 1-dimensional manifold, plus some "noise"

...and noise

The 16-dimensional images live on a 1 -dimensional manifold, plus some "noise"

3-minute exercise

Change your multi-layer perceptron to take \boldsymbol{Z} and produce a distribution over \boldsymbol{X}

$$
p_{\theta}(x \mid z)
$$

3-minute exercise

Change your multi-layer perceptron to take \boldsymbol{Z} and produce a distribution over \boldsymbol{X}

$$
p_{\theta}(x \mid z)
$$

Decoder

```
def generative_network(z, ...):
```

.
return bernoulli_logits \# for binary pixels

$z \rightarrow x$

Inference

$?$

Inversing our world

Two BIG problems to solve:
Inference
You wrote down $P_{\theta}(x \mid z)$ and can compute it.
Say I give you \boldsymbol{X}. Keeping θ fixed, what was \mathcal{Z} ? Or $p_{\theta}(z \mid x)$?

Learning

Is there a better (best) θ to generate the observed \boldsymbol{X} from \boldsymbol{Z} ?

Inference

You wrote down $p_{\theta}(x \mid z)$ and can compute it.
Say I give you \boldsymbol{X}. Keeping θ fixed, what was Z ? Or $p_{\theta}(z \mid x)$?
$z \in \mathbb{R}$ \qquad

100001100002100003

Inference

You wrote down $p_{\theta}(x \mid z)$ and can compute it.
Say I give you \boldsymbol{X}. Keeping θ fixed, what was Z ? Or $p_{\theta}(z \mid x)$?
$z \in \mathbb{R}$

100001100002100003

To really answer that question, we need some notion of where we might have started! No inference without prior assumptions :)

Prior assumptions

Inference

$$
p(z)=\mathcal{N}(z ; 0,1)
$$

I give you \boldsymbol{X}. Keeping θ fixed, what was \boldsymbol{Z} ?

$$
p_{\theta}(x \mid z)
$$

Inference

$$
p(z)=\mathcal{N}(z ; 0,1)
$$

I give you \boldsymbol{X}. Keeping θ fixed, what was \boldsymbol{Z} ?

$$
p_{\theta}(x \mid z)
$$

3-minute exercise

$$
p(z)=\mathcal{N}(z ; 0,1)
$$

Assuming the largest value of $p_{\theta}(x \mid z)$ is 1 , draw

$$
p_{\theta}(x, z)=p_{\theta}(x \mid z) p(z)
$$

as a function of \boldsymbol{Z} on the same axis as above

Joint density (with x observed)

$$
p(z)=\mathcal{N}(z ; 0,1)
$$

Assuming the largest value of $p_{\theta}(x \mid z)$ is 1 , draw

$$
p_{\theta}(x, z)=p_{\theta}(x \mid z) p(z)
$$

as a function of \boldsymbol{Z} on the same axis as above

Joint density (with x observed)

Area $=$?

1-minute exercise:
what is the area?

Marginal likelihood (evidence)

Area $=1$

Area $=$?

$$
\begin{aligned}
\text { area } & =\int p_{\theta}(x \mid z) p(z) \mathrm{d} z \\
& =\int p_{\theta}(x, z) \mathrm{d} z \\
& =p_{\theta}(x)
\end{aligned}
$$

Relationship to posteror

Area $=1$

$$
p_{\theta}(z \mid x)=\frac{p_{\theta}(x \mid z) p(z)}{p_{\theta}(x)} \quad \begin{gathered}
\text { Dividing by the marginal } \\
\text { ilkeihood } \\
\text { area back evidence to } 1 . . .
\end{gathered}
$$

Evidence, for all data points

$$
\begin{gathered}
\left.X \equiv x^{(1)}, x^{(2)} \ldots, x^{(N)} \begin{array}{c}
\text { Area for data } \\
\text { point } n
\end{array}\right) \\
p_{\theta}(X)=\prod_{n=1}^{N} p_{\theta}\left(x^{(n)}\right)
\end{gathered}
$$

Evidence, for all data points

$$
\begin{aligned}
& X \equiv x^{(1)}, x^{(2)} \ldots, x^{(N)} \begin{array}{c}
\text { Area for data } \\
\text { point } n
\end{array} \\
& X=\sum_{n=1}^{N} \log p_{\theta}\left(x^{(n)}\right)
\end{aligned}
$$

Maximizing the evidence

The product of the areas

These Z's don't generate images like the ones in the data set...
(With this $\boldsymbol{\theta}$, the prior doesn't capture the data manifold well)

Maximizing the evidence

For the sharp-sighted

Learning

We want to maximize

except that we cannot write down an analytically tractable expression for the area.

Strategies: Stochastic (Monte Carlo samples + gradients) or deterministic (approximate inference). We'll follow the "deterministic" path next..

Approximate inference

We want to use this quantity for "learning", but cannot compute it in an analytically tractable way:

$$
\begin{aligned}
\log p_{\theta}(x) & =\log \int p_{\theta}(x \mid z) p(z) \mathrm{d} z \\
& =\log \int p_{\theta}(x, z) \mathrm{d} z
\end{aligned}
$$

"Variational lower bound"

Unnormalized $p_{\theta}(z \mid x)$ We cannot (tractably) compute Unnormalized $q_{\phi}(z \mid x)$

Strategy: we choose some other $q_{\phi}(z \mid x)$ so that we can compute the area underneath the blue curve (e.g. Gaussian)

Encoder

```
def inference_network(x, latent_dim=1):
    return mu, sigma
```


Encoder decoder

Strategy

Change ϕ to inflate the area under the blue curve. We can do that!
Change θ to change the green curve, so that we can inflate the area under the blue curve even more
...and so, hopefully, the area under the green curve also gets bigger

Whhaaaatttt?

Strategy

Change ϕ to inflate the area under the blue curve. We can do that!

Change θ to change the green curve, so that we can inflate the area under the blue curve even more
...and so, hopefully, the area under the green curve also gets bigger

3-minute exercise

Create and draw $q_{\phi}(z \mid x)=\mathcal{N}\left(z ; \mu_{\phi}(x), \sigma_{\phi}^{2}(x)\right)$ as a function. It could be a multi-layer perceptron (MLP) that takes 16-dimensional \boldsymbol{X}, and produces two 1-dimensional quantities,

$$
\begin{aligned}
\text { mean } & =\mu_{\phi}(x) \\
\text { variance } & =\sigma_{\phi}^{2}(x)
\end{aligned}
$$

What are your parameters ϕ ?

Objective function discussion

maximize (for all data points)...

$$
\mathbb{E}_{q_{\phi}(z \mid x)}\left[\log p_{\theta}(x \mid z)\right]-\operatorname{KL}\left(q_{\phi}(z \mid x) \| p(z)\right)
$$

Evidence lower bound (ELBO) for one data point

$$
\begin{aligned}
\log p_{\theta}(x) & =\log \int p_{\theta}(x \mid z) p(z) \mathrm{d} z \\
& =\log \int q_{\phi}(z \mid x)\left[\frac{p_{\theta}(x \mid z) p(z)}{q_{\phi}(z \mid x)}\right] \mathrm{d} z \\
& \geq \int q_{\phi}(z \mid x) \log \left[\frac{p_{\theta}(x \mid z) p(z)}{q_{\phi}(z \mid x)}\right] \mathrm{d} z \quad \text { JJensen] } \\
& =\int q_{\phi}(z \mid x) \log p_{\theta}(x \mid z) \mathrm{d} z-\int q_{\phi}(z \mid x) \log \left[\frac{q_{\phi}(z \mid x)}{p(z)}\right] \mathrm{d} z \\
& =\mathbb{E}_{q_{\phi}(z \mid x)}\left[\log p_{\theta}(x \mid z)\right]-\mathrm{KL}\left(q_{\phi}(z \mid x) \| p(z)\right) \\
\mathrm{ELBO} \longrightarrow & \equiv \mathcal{L}(x ; \theta, \phi)
\end{aligned}
$$

Evidence lower bound (ELBO) for one data point

$$
\log p_{\theta}(x)=\log \int p_{\theta}(x \mid z) p(z) \mathrm{d} z
$$

$$
=\log \int q_{\phi}(z \mid x)\left[\frac{p_{\theta}(x \mid z) p(z)}{q_{\phi}(z \mid x)}\right] \mathrm{d} z
$$

Evidence lower bound (ELBO) for one data point

$$
\log p_{\theta}(x)=\log \int p_{\theta}(x \mid z) p(z) \mathrm{d} z
$$

concave function

$$
\begin{aligned}
& =\log \int q_{\phi}(z \mid x)\left[\frac{p_{\theta}(x \mid z) p(z)}{q_{\phi}(z \mid x)}\right] \underline{\mathrm{d} z} \\
& \geq \int q_{\phi}(z \mid x) \log \left[\frac{p_{\theta}(x \mid z) p(z)}{q_{\phi}(z \mid x)}\right] \frac{\mathrm{d} z}{\text { [Jensen] }} \\
& \text { expectation concave function }
\end{aligned}
$$

$$
\log \mathbb{E}_{q_{\phi}(z \mid x)}[f(z)] \geq \mathbb{E}_{q_{\phi}(z \mid x)}[\log f(z)]
$$

3-minute exercise

Jensen's inequality
Draw $\log (\ldots)$ as a function, and convince yourself that

$$
\log \left(\underline{\frac{2}{3}} z_{1}+\frac{1}{3} z_{2}\right) \geq \underline{\frac{2}{3}} \log \left(z_{1}\right)+\frac{1}{3} \log \left(z_{2}\right)
$$

is always true for any (nonnegative) setting of z_{1} and z_{2}.

Logarithm (concave)

$$
\log \left(\frac{2}{3} z_{1}+\frac{1}{3} z_{2}\right) \geq \frac{2}{3} \log \left(z_{1}\right)+\frac{1}{3} \log \left(z_{2}\right)
$$

Evidence lower bound (ELBO) for one data point

$$
\log p_{\theta}(x)=\log \int p_{\theta}(x \mid z) p(z) \mathrm{d} z
$$

Reconstruction
Expected log likelihood.
Cannot compute in
closed form, and will
have to get a Monte
Carlo estimate
(with SGD)

$$
=\log \int q_{\phi}(z \mid x)\left[\frac{p_{\theta}(x \mid z) p(z)}{q_{\phi}(z \mid x)}\right] \mathrm{d} z
$$

$$
\begin{aligned}
& \geq \int q_{\phi}(z \mid x) \log \left[\frac{p_{\theta}(x \mid z) p(z)}{q_{\phi}(z \mid x)}\right] \mathrm{d} z \quad \begin{array}{c}
\text { distributions (here). } \\
\text { Can compute in closed } \\
\text { form }
\end{array} \\
& =\int q_{\phi}(z \mid x) \log p_{\theta}(x \mid z) \mathrm{d} z-\int q_{\phi}(z \mid x) \log \left[\frac{q_{\phi}(z \mid x)}{p(z)}\right] \mathrm{d} z \\
& =\mathbb{E}_{q_{\phi}(z \mid x)}\left[\log p_{\theta}(x \mid z)\right]-\operatorname{KL}\left(q_{\phi}(z \mid x) \| p(z)\right) \\
& \equiv \mathcal{L}(x ; \theta, \phi)
\end{aligned}
$$

Kullback-Leibler divergence between two Gaussian

Expected log likelihood

We can estimate the expected log likelihood with a Monte Carlo estimate:
Draw L samples $z^{(l)} \sim \mathcal{N}\left(z ; \mu_{\phi}(x), \sigma_{\phi}^{2}(x)\right) \ldots$

Expected log likelihood

We can estimate the expected log likelihood with a Monte Carlo estimate:
Draw L samples $z^{(l)} \sim \mathcal{N}\left(z ; \mu_{\phi}(x), \sigma_{\phi}^{2}(x)\right)$ and use them to estimate the average:

$$
\begin{aligned}
\mathbb{E}_{q_{\phi}(z \mid x)}\left[\log p_{\theta}(x \mid z)\right] & =\mathbb{E}_{z \sim \mathcal{N}\left(z ; \mu_{\phi}(x), \sigma_{\phi}^{2}(x)\right)}\left[\log p_{\theta}(x \mid z)\right] \\
& \approx \frac{1}{L} \sum_{l=1}^{L} \log p_{\theta}\left(x \mid z^{(l)}\right)
\end{aligned}
$$

Expected log likelihood

We can estimate the expected log likelihood with a Monte Carlo estimate:
Draw L samples $z^{(l)} \sim \mathcal{N}\left(z ; \mu_{\phi}(x), \sigma_{\phi}^{2}(x)\right)$ and use them to estimate the average:

$$
\begin{aligned}
\mathbb{E}_{q_{\phi}(z \mid x)}\left[\log p_{\theta}(x \mid z)\right] & =\mathbb{E}_{z \sim \mathcal{N}\left(z ; \mu_{\phi}(x), \sigma_{\phi}^{2}(x)\right)}\left[\log p_{\theta}(x \mid z)\right] \\
& \approx \frac{1}{L} \sum_{l=1}^{L} \log p_{\theta}\left(x z^{(l)}\right.
\end{aligned}
$$

Using samples in this way removes ϕ from part of the objective function, and even though we can evaluate it, we can't take derivatives / get the gradients!

Naive sampling

Expected log likelihood: reparameterization trick

We can estimate the expected log likelihood with a Monte Carlo estimate:
Draw L samples $\epsilon^{(l)} \sim \mathcal{N}(\epsilon ; 0,1)$ and transform them!

Expected log likelihood

We can estimate the expected log likelihood with a Monte Carlo estimate:
Draw L samples $\epsilon^{(l)} \sim \mathcal{N}(\epsilon ; 0,1)$ and use them to estimate the average:

$$
\begin{aligned}
\mathbb{E}_{q_{\phi}(z \mid x)}\left[\log p_{\theta}(x \mid z)\right] & =\mathbb{E}_{\epsilon \sim \mathcal{N}(\epsilon ; 0,1)}\left[\log p_{\theta}\left(x \mid z=\mu_{\phi}(x)+\epsilon * \sigma_{\phi}(x)\right)\right] \\
& \approx \frac{1}{L} \sum_{l=1}^{L} \log p_{\theta}\left(x \mid z^{(l)}=\mu_{\phi}(x)+\epsilon_{\dagger}^{(l)} * \sigma_{\phi}(x)\right)
\end{aligned}
$$

Expected log likelihood

We can estimate the expected log likelihood with a Monte Carlo estimate:
Draw L samples $\epsilon^{(l)} \sim \mathcal{N}(\epsilon ; 0,1)$ and use them to estimate the average:

$$
\begin{aligned}
\mathbb{E}_{q_{\phi}(z \mid x)}\left[\log p_{\theta}(x \mid z)\right] & =\mathbb{E}_{\epsilon \sim \mathcal{N}(\epsilon ; 0,1)}\left[\log p_{\theta}\left(x \mid z=\mu_{\phi}(x)+\epsilon * \sigma_{\phi}(x)\right)\right] \\
& \approx \frac{1}{L} \sum_{l=1}^{L} \log p_{\theta}\left(x \mid z^{(l)}=\mu_{\phi}(x)+\epsilon^{(l)} * \sigma_{\phi}(x)\right)
\end{aligned}
$$

The noise is introduced "from outside" the computation graph, and we can evaluate the objective function and take derivatives / get the gradients!

Reparameterization trick

ELBO for full data set

You now have all the tools to estimate the ELBO for a whole data set,
$\mathcal{L}(X ; \theta, \phi)=\sum_{n=1}^{N}\left\{\mathbb{E}_{q_{\phi}\left(z^{(n)} \mid x^{(n)}\right)}\left[\log p_{\theta}\left(x^{(n)} \mid z^{(n)}\right)\right]-\operatorname{KL}\left(q_{\phi}\left(z^{(n)} \mid x^{(n)}\right) \| p\left(z^{(n)}\right)\right)\right\}$
take mini-batch subsamples, and use stochastic gradient ascent to maximize it.

Practical

The end

Evidence lower bound (ELBQ) for one data point
 ELBO: can estimate

$$
\begin{aligned}
& \geq \int q_{\phi}(z \mid x) \log \left[\frac{p_{\theta}(x \mid z) p(z)}{q_{\phi}(z \mid x)}\right] \mathrm{d} z \quad[\text { Jensen }] \\
& =\int q_{\phi}(z \mid x) \log p_{\theta}(x \mid z) \mathrm{d} z-\int q_{\phi}(z \mid x) \log \left[\frac{q_{\phi}(z \mid x)}{p(z)}\right] \mathrm{d} z \\
& =\mathbb{E}_{q_{\phi}(z \mid x)}\left[\log p_{\theta}(x \mid z)\right]-\mathrm{KL}\left(q_{\phi}(z \mid x) \| p(z)\right) \\
& \equiv \mathcal{L}(x ; \theta, \phi)
\end{aligned}
$$

