Deep Generative Models

Ulrich Paquet DeepMind

Version: 7 September 2017

2-minute exercise

Talk to your friend next to you, and tell him or her everything you can about this data set:

Data

Data manifold

We can capture most of the variability in the data through one number

$$z^{(n)} = 1 \text{ or } 2, 3, 4$$

for each image *n*, even though each image is 16 dimensional

How?

How?

- 1. Take $z^{(n)} = 2$
- 2. Draw bar in column 2 of image
- 3. Et voila! You have $x^{(n)}$

How?

- 1. Take $z^{(n)} = 2$
- 2. Draw bar in column 2 of image
- 3. Et voila! You have $x^{(n)}$

3-minute exercise

Write or draw a function (like a multi-layer perceptron) that takes $z\in\mathbb{R}$ and produces \mathcal{X}

Is your input one-dimensional?

Is your output 16-dimensional?

Identify all the "tunable" parameters heta of your function

3-minute exercise

Write or draw a function (like a multi-layer perceptron) that takes $z\in\mathbb{R}$ and produces \mathcal{X}

Is your input one-dimensional?

Is your output 16-dimensional?

Identify all the "tunable" parameters heta of your function

scratch space

Data manifold

The 16-dimensional images live on a 1-dimensional manifold, plus some "noise"

...and noise

The 16-dimensional images live on a 1-dimensional manifold, plus some "noise"

3-minute exercise

Change your multi-layer perceptron to take $\mathcal Z$ and produce a distribution over $\mathcal X$

3-minute exercise

Change your multi-layer perceptron to take $\mathcal Z$ and produce a distribution over $\mathcal X$

scratch space

Decoder

def generative_network(z, ...):

. . .

return bernoulli_logits # for binary pixels

 $\rightarrow x$ \boldsymbol{z}

Inference

Inversing our world

Two BIG problems to solve:

Inference

You wrote down $p_{ heta}(x|z)$ and can compute it. Say I give you x. Keeping heta fixed, what was z? Or $p_{ heta}(z|x)$?

Learning

Is there a better (best) heta to generate the **observed** ${\mathcal X}$ from ${\mathcal Z}$?

Inference

You wrote down $p_{ heta}(x|z)$ and can compute it.

Say I give you $\, x$. Keeping $\, heta$ fixed, what was z ? Or $p_{ heta}(z|x)$?

Inference

You wrote down $p_{ heta}(x|z)$ and can compute it.

Say I give you $\, x$. Keeping $\, heta$ fixed, what was z ? Or $p_{ heta}(z|x)$?

To really answer that question, we need some notion of where we might have started! No inference without prior assumptions :)

1-minute exercise: what is the area?

Evidence, for all data points

$$X \equiv x^{(1)}, x^{(2)}, \dots, x^{(N)}$$
Area for data
point n
$$p_{\theta}(X) = \prod_{n=1}^{N} p_{\theta}(x^{(n)})$$

Evidence, for all data points

$$X \equiv x^{(1)}, x^{(2)} \dots, x^{(N)}$$
 Area for data point n
 $\log p_{\theta}(X) = \sum_{n=1}^{N} \log p_{\theta}(x^{(n)})$

(With this heta, the prior doesn't capture the data manifold well)

Learning

except that we cannot write down an analytically tractable expression for the area.

Strategies: Stochastic (Monte Carlo samples + gradients) or deterministic (approximate inference). We'll follow the "deterministic" path next...

Approximate inference

We want to use this quantity for "learning", but cannot compute it in an analytically tractable way:

$$\log p_{\theta}(x) = \log \int p_{\theta}(x|z) p(z) dz$$
$$= \log \int p_{\theta}(x, z) dz$$

Encoder

Encoder decoder

Strategy

Change ϕ to inflate the area under the blue curve. We can do that!

Change θ to change the green curve, so that we can inflate the area under the blue curve even more

...and so, hopefully, the area under the green curve also gets bigger

Whhaaaatttt?

Strategy

Change ϕ to inflate the area under the blue curve. We can do that!

Change θ to change the green curve, so that we can inflate the area under the blue curve even more

...and so, hopefully, the area under the green curve also gets bigger

3-minute exercise

Create and draw
$$q_{\phi}(z|x) = \mathcal{N}\Big(z; \mu_{\phi}(x), \, \sigma_{\phi}^2(x)\Big)$$
 as a function.

It could be a multi-layer perceptron (MLP) that takes 16-dimensional ${\mathcal X}$, and produces two 1-dimensional quantities, scratch space

$$\label{eq:mean} \begin{split} & \text{mean} = \mu_\phi(x) \\ & \text{variance} = \sigma_\phi^2(x) \end{split}$$
 What are your parameters ϕ ?

Objective function discussion

maximize (for all data points)...

$$\begin{split} \log p_{\theta}(x) &= \log \int p_{\theta}(x|z) \, p(z) \, \mathrm{d}z \\ &= \log \int q_{\phi}(z|x) \left[\frac{p_{\theta}(x|z) \, p(z)}{q_{\phi}(z|x)} \right] \, \mathrm{d}z \\ &\geq \int q_{\phi}(z|x) \log \left[\frac{p_{\theta}(x|z) \, p(z)}{q_{\phi}(z|x)} \right] \, \mathrm{d}z \quad \text{[Jensen]} \\ &= \int q_{\phi}(z|x) \log p_{\theta}(x|z) \, \mathrm{d}z - \int q_{\phi}(z|x) \log \left[\frac{q_{\phi}(z|x)}{p(z)} \right] \, \mathrm{d}z \\ &= \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x|z) \right] - \mathrm{KL} \left(q_{\phi}(z|x) \, \big\| \, p(z) \right) \end{split}$$

$$\log p_{\theta}(x) = \log \int p_{\theta}(x|z) p(z) dz$$

$$= \log \int q_{\phi}(z|x) \left[\frac{p_{\theta}(x|z) p(z)}{q_{\phi}(z|x)} \right] \frac{dz}{q_{\phi}(z|x)}$$

$$\geq \int q_{\phi}(z|x) \log \left[\frac{p_{\theta}(x|z) p(z)}{q_{\phi}(z|x)} \right] \frac{dz}{dz} \quad \text{[Jensen]}$$

$$= \log \mathbb{E}_{q_{\phi}(z|x)} \left[f(z) \right] \geq \mathbb{E}_{q_{\phi}(z|x)} \left[\log f(z) \right]$$

3-minute exercise

Jensen's inequality

Draw log(...) as a function, and convince yourself that

$$\log\left(\frac{2}{3}z_{1} + \frac{1}{3}z_{2}\right) \ge \frac{2}{3}\log(z_{1}) + \frac{1}{3}\log(z_{2})$$

is always true for any (nonnegative) setting of z_1 and z_2 .

Logarithm (concave) $\log\left(\frac{2}{3}z_1 + \frac{1}{3}z_2\right) \ge \frac{2}{3}\log(z_1) + \frac{1}{3}\log(z_2)$ $\frac{2}{3}z_1 + \frac{1}{3}z_2$ z_1

We can estimate the expected log likelihood with a Monte Carlo estimate:

Draw L samples
$$z^{(l)} \sim \mathcal{N}(z; \mu_{\phi}(x), \, \sigma_{\phi}^2(x))$$
 ...

We can estimate the expected log likelihood with a Monte Carlo estimate:

Draw L samples $z^{(l)} \sim \mathcal{N}(z; \mu_{\phi}(x), \sigma_{\phi}^2(x))$ and use them to estimate the average:

$$\mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x|z) \right] = \mathbb{E}_{z \sim \mathcal{N}(z; \mu_{\phi}(x), \sigma_{\phi}^{2}(x))} \left[\log p_{\theta}(x|z) \right]$$
$$\approx \frac{1}{L} \sum_{l=1}^{L} \log p_{\theta}(x|z^{(l)})$$

We can estimate the expected log likelihood with a Monte Carlo estimate:

Draw L samples $z^{(l)} \sim \mathcal{N}(z; \mu_{\phi}(x), \sigma_{\phi}^2(x))$ and use them to estimate the average:

$$\mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x|z) \right] = \mathbb{E}_{z \sim \mathcal{N}(z; \mu_{\phi}(x), \sigma_{\phi}^{2}(x))} \left[\log p_{\theta}(x|z) \right]$$
$$\approx \frac{1}{L} \sum_{l=1}^{L} \log p_{\theta}(x|z^{(l)})$$

Using samples in *this* way removes ϕ from part of the objective function, and even though we can evaluate it, we can't take derivatives / get the gradients!

Naive sampling

Expected log likelihood: reparameterization trick

We can estimate the expected log likelihood with a Monte Carlo estimate:

Draw L samples $\epsilon^{(l)} \sim \mathcal{N}(\epsilon; 0, 1)$ and transform them!

We can estimate the expected log likelihood with a Monte Carlo estimate:

Draw L samples $\epsilon^{(l)} \sim \mathcal{N}(\epsilon; 0, 1)$ and use them to estimate the average: $\mathbb{E}_{q_{\phi}(z|x)} \Big[\log p_{\theta}(x|z) \Big] = \mathbb{E}_{\epsilon \sim \mathcal{N}(\epsilon; 0, 1)} \Big[\log p_{\theta}(x \mid z = \mu_{\phi}(x) + \epsilon * \sigma_{\phi}(x)) \Big]$ $\approx \frac{1}{L} \sum_{l=1}^{L} \log p_{\theta}(x \mid z^{(l)} = \mu_{\phi}(x) + \epsilon^{(l)} * \sigma_{\phi}(x))$

We can estimate the expected log likelihood with a Monte Carlo estimate:

Draw L samples $\epsilon^{(l)} \sim \mathcal{N}(\epsilon; 0, 1)$ and use them to estimate the average: $\mathbb{E}_{q_{\phi}(z|x)} \Big[\log p_{\theta}(x|z) \Big] = \mathbb{E}_{\epsilon \sim \mathcal{N}(\epsilon; 0, 1)} \Big[\log p_{\theta}(x \mid z = \mu_{\phi}(x) + \epsilon * \sigma_{\phi}(x)) \Big]$ $\approx \frac{1}{L} \sum_{l=1}^{L} \log p_{\theta}(x \mid z^{(l)} = \mu_{\phi}(x) + \epsilon^{(l)} * \sigma_{\phi}(x))$

The noise is introduced "from outside" the computation graph, and we can evaluate the objective function **and** take derivatives / get the gradients!

Reparameterization trick

ELBO for full data set

You now have all the tools to estimate the ELBO for a whole data set,

$$\mathcal{L}(X;\theta,\phi) = \sum_{n=1}^{N} \left\{ \mathbb{E}_{q_{\phi}(z^{(n)}|x^{(n)})} \Big[\log p_{\theta}(x^{(n)}|z^{(n)}) \Big] - \mathrm{KL} \big(q_{\phi}(z^{(n)}|x^{(n)}) \, \big\| \, p(z^{(n)}) \big) \right\}$$

take mini-batch subsamples, and use stochastic gradient ascent to maximize it.

Practical

TCCTUCTON.	,000		100.100	numbres, s	
Iteration:	7700	ELBO:	-85.999	Examples/s:	1.158e+07
Iteration:	7800	ELBO:	-90.856	Examples/s:	1.155e+07
Iteration:	7900	ELBO:	-85.855	Examples/s:	1.155e+07
Iteration:	8000	ELBO:	-88.127	Examples/s:	1.190e+07

Iteration:	8100	ELBO:	-90.874	Examples/s:	1.118e+07
Iteration:	8200	ELBO:	-92.233	Examples/s:	1.166e+07
Iteration:	8300	ELBO:	-95.609	Examples/s:	1.148e+07
Iteration:	8400	ELBO:	-85.463	Examples/s:	1.128e+07
· · · ·		<u>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997</u>			

The end

