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2-minute exercise

Talk to your friend next to you, and tell him or her everything you can about this
data set:




Data




Data manifold

We can capture most of the variability in the data through one number

2" =1or23,4

for each image n, even though each image is 16 dimensional

How?



How? Z(n) _ 2

1. Takez(™) =2
2. Draw bar in column 2 of image
3. Etvoila! You have z(™)

Some bar-drawing process

(n)




How? Z(n) _ 2

1. Takez(™) =92
2. Draw bar in column 2 of image ‘

3. Etvoila! You have (™) Maybe some neural

network, that takes z as
input, and outputs a
16-dimensional vector x...?

l

(n)




3-minute exercise

Write or draw a function (like a multi-layer
perceptron) that takes z € R and
produces JU

Is your input one-dimensional?

Is your output 16-dimensional?

|dentify all the “tunable” parameters 9 of
your function




3-minute exercise

Write or draw a function (like a multi-layer
perceptron) that takes z € R and
produces U

Is your input one-dimensional?
Is your output 16-dimensional?

|dentify all the “tunable” parameters 9 of
your function



Data manifold

The 16-dimensional images live on a 1-dimensional manifold, plus some “noise”

“_0.1 ” “0” “0.2” :‘0.3n

‘;1 ” ‘:2n “3” :‘41!

z € R-




...and noise

The 16-dimensional images live on a 1-dimensional manifold, plus some “noise”

“_0.1 ” “0” “0.2” :‘0.3n

‘;1 ” ‘:2n “3” :‘41!

z € R-




3-minute exercise

Change your multi-layer perceptron to
take 2 and produce a distribution over JU

po(2|2)

0
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3-minute exercise

Change your multi-layer perceptron to
take 2 and produce a distribution over JU

po(2|2)



def generative network (z, ...):

Decoder

return bernoulli logits # for binary pixels

EEEENTEEEE.

Z—= X



Inference

EEEENTEEEE.



Inversing our world

Two BIG problems to solve:

Inference

You wrote down g (.’L‘ ‘ Z) and can compute it.

Say | give you . Keeping { fixed, what was Z ? Or Po (z|aj)?
Learning

s there a better (best) @ to generate the observed I from 2 ?



Inference

You wrote down pg (.’L’ ‘ Z) and can compute it.

Say | give you I . Keeping { fixed, what was 2 ? Or Po (zlaj)'?

1 2 3 4 &5 .

z e R -

-0 00 01 02 03 ..

100001 100002 100003 ...




Inference

You wrote down pe (.’L’ ‘ Z) and can compute it.

Say | give you I . Keeping { fixed, what was 2 ? Or Po (zlaj)'?

z € R -

-0 00 01 02 03 ..

100001 100002 100003 ...

To really answer that question, we need some notion of where we might
have started! No inference without prior assumptions :)



Prior assumptions
Area = 1

“unobserved random variables”

“observed random variables”



Inference

p(z) = N(2;0,1)

4

| give you I . Keeping { fixed, what was 27




Inference

p(z) = N(2;0,1)

4

| give you I . Keeping { fixed, what was 27




3-minute exercise

p(z) = N(2;0,1)

4

Assuming the largest value of pg(x|2)is 1,
draw

po(z, 2) = po(x|2) p(2)

as a function of 27 on the same axis as above




Joint density (with x observed)

p(z) = N(2;0,1)

4

Assuming the largest value of pg(x|2)is 1,
draw

po(z, 2) = po(x|2) p(2)

as a function of 27 on the same axis as above




Joint density (with x observed)

Area = 1

Area = ?

1-minute exercise:
what is the area?



Marginal likelihood (evidence)

/)

Area = 1

Area = ?

avea = [ po(al2) p(2) dz
= /pg(:c, z)dz

= po(z)



Relationship to poster

Ff

Area = 1
po(#I7) p(2)
-2
Area = 1
po(z|lz) = Po(|2) p(2) lkelihood (evidence) seales the

p9 (aj) area back to 1...



Evidence, for all data points

X =0 @ L)
Area for data
point n

N
H (n)



Evidence, for all data points

X =zW 2 . W)
Area for data
point n

log pg(X Z log po (™)



Evidence, for all data points The product of the areas

underneath the green curves

po(X) = | | po(z™)




Maximizing the evidence The product of the areas

underneath the green curves

7 N po(X) = [] po(a™)

|
LI .

By changing 9 we can make the
evidence for these data points bigger...

These Z’s don’t generate images like the ones in the data set...

0



Maximizing the evidence The product of the areas

underneath the green curves

po(X) = | | po(z™)

That’s better...!

4




For the sharp-sighted

roughly.%20%

40%

The product of the areas
underneath the green curves

po(X) = || po(z™)

20%| 20%

4




Learning

We want to maximize - Area for data
max | log pg (X)] point n /\

"N
= max Z log pg(z(™)
n=1

except that we cannot write down an analytically tractable expression for the area.

Strategies: Stochastic (Monte Carlo samples + gradients) or deterministic (approximate inference). We'll follow the “deterministic” path next...



Approximate inference

We want to use this quantity for “learning”, but cannot compute it in an analytically
tractable way:

log po(x log/pg (x]2) p(z) dz

=log [ po(z



”

“Variational lower bound

Unnormalized Pg (Z‘J))
We cannot (tractably) compute
the area underneath the green

cu er

Unnormalized ¢ (Z ‘ -T)

Strategy: we chpose some
other ¢ (Z|CC) so that we can
compute the area underneath
the blue curve (e.g. Gaussian)

can’t compute

\

> ) -

can compute



Encoder

def inference network (x, latent dim=1):

return mu, sigma

EEEENTEEEE.



Encoder decoder
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EEEENTEEEE.

:
rT—> 2



Strategy

Change ¢ to inflate the area under the blue curve. We can do that!

Change @ to change the green curve, so that we can inflate the area under the

blue curve even more /\

...and so, hopefully, the area under the green curve also gets bigger

can’t compute

> ) N\

can compute



VWhhaaaatttt?



Strategy

Change @ to inflate the area under the blue curve. We can do that!

Change @ to change the green curve, so that we can inflate the area under the

blue curve even more /\

...and so, hopefully, the area under the green curve also gets bigger

-

< - =

mean = [ig (z)

variance = U?p (x)




3-minute exercise

Create and draw Q¢(Z|$) = N(Z, MU (56), O'q% (x)) as a function.

It could be a multi-layer perceptron (MLP) that takes 16-dimensional [, and
produces two 1-dimensional quantities,

mean = [4(T)

variance = 0'?5 (x)

What are your parameters gb?



Obijective function discussion

maximize (for all data points)...

L]
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L]
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EEEENTEEEE.

KL=20

2o el | 108 P0(22) | — KL (g4 (2]2) || p(2))




Evidence lower bound (ELBO) for one data point

log po () = log / po(z]2) p(z) dz

zlog/q¢(z|:c) _

> ] 45 (2|x) log

po(z|2)

qp (2|

Do (33\2)

p(z)
z)

p(2) | _

| ge (]

r)

dz

dz [Jensen|

:/qu(zlx) log pp(z|2) dz — [ qg(z|z)log [%(Z‘x)] @

— Eq¢(z|a:) [lngg :C‘Z ] o

ELBO = L(x;0, ¢)

p(z)

L(gs(2]2) || p(2))



Evidence lower bound (ELBO) for one data point
log po(x) = 1og [ polelz) p(z) d2

:log/%(zla:) [Pe(x\z)l?(z)] 4z

qe(2|z)

can’t compute



Evidence lower bound (ELBO) for one data point

log po () = log / po(]2) p(z) dz

:10gJ/q¢(z|x)

concave function

> /q¢(z|x) log

e

expectation concave function

log Lo (22) [f(z)} > K, (2|) [log f(z)]




3-minute exercise

Jensen’s inequality
Draw log(...) as a function, and convince yourself that

log( 21+ £29) > 2log(z1) + 3 log(22)

is always true for any (nonnegative) setting of z, and z,.



Logarithm (concave)

log (221 + 522) > 2log(z1) + 3 log(z2)



Evidence lower bound (ELBO) for one data point

log po () = log / po(]2) p(z) dz

zlog/q¢(z|:c)
> f%(ZliC) log

Reconstruction

Expected log likelihood.
Cannot compute in
closed form, and will

Kullback-Leibler
dz divergence between
two Gaussian
distributions (here).
dz Can compute in closed
form

, Z\L
have to geta Monte | 7~ /Q¢(Z|$) 10gp9($|z) dz - qu(Z‘I) log [M] dz

Carlo estimate
(with SGD)

ELBO = L(x;0, ¢)

+ By, (o12) | log po(a]2)| |~ [K

p(z)

L(gs(2]2) || p(2))



Expected log likelihood

We can estimate the expected log likelihood with a Monte Carlo estimate:

Draw L samples Z(l) ~ N(Z, Ho (ZC), O'qzb (.”E))



Expected log likelihood
We can estimate the expected log likelihood with a Monte Carlo estimate:

Draw L samples Z(l) ~ N(Z, e (:C), O'q% (.“E)) and use them to estimate
the average:

g, (2]2) {10gp9(55|2’)} =B, N (0 (2), o2 (z)) [10gpe(37|z)]

L
1
~ §jlogp9<sc|z‘“>>
[=1



Expected log likelihood
We can estimate the expected log likelihood with a Monte Carlo estimate:

Draw L samples Z(l) ~ N(Z, e (:C), O'(% (.“E)) and use them to estimate
the average:

g, (2]2) {10gp9(55|z)} = W2 N G (o), o2 (z)) [10gp9(37|2)]

L
~ %glogpe(

Using samples in this way removes ¢ from part of the objective function, and
even though we can evaluate it, we can’t take derivatives / get the gradients!




Naive sampling
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forward computation

EEEENTEEEE.

derivatives



Expected log likelihood: reparameterization trick

We can estimate the expected log likelihood with a Monte Carlo estimate:

Draw L samples e(l) ~ N(E; (), 1) and transform them!

NN



Expected log likelihood

We can estimate the expected log likelihood with a Monte Carlo estimate:

Draw L samples e(l) ~ N(E; O7 1) and use them to estimate the average:
Eqy (21) [logpe(vaZ)} = Ben(e0,1) [10%1?9 (2] 2 = pg(z) + e Ucp(fc))}

L
1
~ 7 D logpa(e |20 = pg(x) + € x 0g(a))
=1



Expected log likelihood

We can estimate the expected log likelihood with a Monte Carlo estimate:

Draw L samples e(l) ~ N(E; (), 1) and use them to estimate the average:

LNEE [1ogpe(:clz)] = Hen(s0,1) [10gpe (z]2 = po(@) + e qu(fv))}

L
1
~ 7 logpe( |20 = o(@) + €V x ()
=1

The noise is introduced “from outside” the computation graph, and we can
evaluate the objective function and take derivatives / get the gradients!



Reparameterization trick

forward computation
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EEEENTEEEE.

derivatives



ELBO for full data set

You now have all the tools to estimate the ELBO for a whole data set,

N
L(X;0,6) =) {Eq¢(z(n)|x(n)) [10g299(33(n)|z(n))] — KL (g (2™ |z™) | P(Z(n)))}

n=1

take mini-batch subsamples, and use stochastic gradient ascent to maximize it.



Practical

[T o T SL TRy ) W W W Addasns e W W8 W W AR e b F b B R A A "

Iteration: 7700 ELBO: -85.999 Examples/s: 1.158e+07
Iteration: 7800 ELBO: -90.856 Examples/s: 1.155e+07
Iteration: 7900 ELBO: -85.855 Examples/s: 1.155e+07
Iteration: 8000 ELBO: -88.127 Examples/s: 1.190e+07

Posterior sample Prior sample

0 10 20 0 10 20

Iteration: 8100 ELBO: -90.874 Examples/s: 1.118e+07
Iteration: 8200 ELBO: -92.233 Examples/s: 1.166e+07
Iteration: 8300 ELBO: -95.609 Examples/s: 1.148e+07
Iteration: 8400 ELBO: -85.463 Examples/s: 1.128e+07



The end



Evidence lower bound (ELBQ) for one data point

ELBO: can estimate

2] »(z|x) log[ o(]2)p ] dz [Jensen]
q¢(2|x)

2 s

/q¢(z|x log pe(x|z) dz — /q¢ z|x) log[

= Eqy (o1 | log po(@]2)| — KL (g5 (22) || p(2))
= L(;0,9)



