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Connecting People to bring them closer together



AI is an essential piece of the puzzle



And helping machines understand the visual world is an important component!



What will you learn today?

How do you design a image and video recognition system for billion scale?


Can you remove the requirement of annotation to learn best 
representations?


Can we understand video faster than understanding individual frames?


How does pushing state of the art in CV make a meaningful difference to 
everyone in the world?
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Vision Models In Production

• Multiple vision tasks need to be done 

• Cannot afford one separate model for 
each task 

• Explosion in computations cost and 
resources



Our Vision - Towards Universal Vision Model
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Our work allows to move the tasks towards upper layers 
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Progress in Image Understanding
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Image & Video classification 
with thousands of concepts

Face & People of 
Interest recognition

Text Detection & 
Recognition
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Leverage large-scale, extremely noisy  
hashtags for weak-supervision

Weakly Supervised Learning @ Billion Scale



Fully Supervised

CAT, DOG, WOODEN FLOOR

Weakly Supervised

#CAT

Un-supervised

???

Challenges of Training at Billion Scale
LEVELS OF SUPERVISION

A CUTE CAT COUPLE



Challenges of Training at Billion Scale
NOISY DATA

Non-Visual Labels

Missing Labels

Incorrect Labels#DOG#LOVE #HUSKY#CAT





Large Weakly Supervised Training

BILLIONS OF 
UNIQUE IMAGES

HUMUNGOUS 
MODELS

THOUSANDS OF
LABELS

DISTRIBUTED
TRAINING





Billion Scale Training at FB
IMAGENET-1K: STATE OF THE ART RESULTS

OUR 3.5B TRAINING
RESNEXT101-32X32 MODEL

85.1%

PREVIOUS SOA

83.1%
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WSL

IMAGENET
A simple, minimalist kitchen with very low lighting. Black cat next to toy mouse on carpet.

WSL
A very modern bathroom with green glass 
tile work in the shower.

A cat sleeping next to a vehicle's tire on 
top of pavement.

https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/

https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/


PyTorch Models Are Available

https://pytorch.org/hub/facebookresearch_WSL-
Images_resnext/

https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/
https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/


How about Videos?



ENRICH OUR USER'S EXPERIENCE



Did We Miss a Great Moment?





Spatiotemporal Visual Modeling
SPACE AND TIME HAVE DIFFERENT STATISTICS
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ACTION OF INTEREST



ACTION OF INTEREST

INFORMATION REDUNDANCY
TEMPORAL NOISE
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dog 0.99 stick 0.7
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Sampling Salient Clips
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Leveraging 
Rich Metadata

HASHTAGS



Challenges With Training at Scale 
S K E W E D  ( LO N G -TA I L )  D I ST R I B U T I O N
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PUBLIC VIDEOS

65M



PUBLIC VIDEOS
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YouTube-8M Dataset  
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State of the Art Results

SPEAKING APPLYING CREAM ARRANGING FLOWERS AUCTIONING BIKING THROUGH SNOW

FLIPPING PANCAKE JOGGING MAKING TEA MOWING SCRAMBLING EGGS

PREVIOUS SOA

77.7%
Metric: Top-1 Accuracy

82.8%

KINETICS: 300K VIDEOS, 400 ACTIONS

Y. Bian et.al ,  ArXiv 2017  



PREVIOUS SOA

77.7%
Metric: Top-1 Accuracy

State of the Art Results

KINETICS: 300K VIDEOS, 400 ACTIONS

+5.1%

OUR 65M TRAINING

82.8%
SPEAKING APPLYING CREAM ARRANGING FLOWERS AUCTIONING BIKING THROUGH SNOW

FLIPPING PANCAKE JOGGING MAKING TEA MOWING SCRAMBLING EGGS



PREVIOUS SOA

21.0%
Metric: Top-1 Accuracy

State of the Art Results

EPIC-KITCHENS: 28K VIDEOS, 2337 ACTIONS

25.6%
EPIC-Kitchens Action Recognit ion Chal lenge  



PREVIOUS SOA

21.0%
Metric: Top-1 Accuracy

State of the Art Results

EPIC-KITCHENS: 28K VIDEOS, 2337 ACTIONS

+4.6%

OUR 65M TRAINING

25.6%



References for the video understanding efforts

SCSampler: Sampling Salient Clips from Video for Efficient Action Recognition 
- https://arxiv.org/abs/1904.04289


Video Classification with Channel-Separated Convolutional Networks - https://
arxiv.org/abs/1904.02811 

Large-scale weakly-supervised pre-training for video action recognition - 
https://arxiv.org/abs/1905.00561 

https://arxiv.org/abs/1904.04289
https://arxiv.org/abs/1904.02811
https://arxiv.org/abs/1904.02811
https://arxiv.org/abs/1905.00561


Pushing State of the Art helps the world in significant ways



Fully-Supervised 
~ Millions

Car

Tree

Semi-Supervised 
~ Trillions

Car

Tree

Weakly-Supervised 
~ Billions

Levels of Supervision

Self-Supervised



NeurIPS 2018 - AI for Social Good workshop



How it works!



Helping in real world scenarios





Population Density Estimation



Naivasha in Kenya



GPWv4 from CIESIN at Columbia University



WorldPop



Facebook



What will you learn today?

How do you design a image and video recognition system for billion scale?


Can you remove the requirement of annotation to learn best 
representations?


Can we understand video faster than understanding individual frames?


How does pushing state of the art in CV make a meaningful difference to 
everyone in the world?




Thank You!


