

Geometry in Computer Vision

Natalia Neverova Research Scientist, Facebook Al

> facebook Artifical intelligence Research

I. Learning correspondences II. 3D reconstruction III. Generation Application: human-centered tasks

3D-fying panoptic perception in the wild

facebook Artificial intelligence Researc (Silde credit Jbendra Malik)

3D-fying panoptic perception in the wild

focebook Artificial Intelligence Research

[Gkioxari et al. Mesh-RCNN. ICCV, 2019]

Objects: shape and appearance decomposition

Texture

[Kanazawa et al. Learning Category-Specific Mesh Reconstruction from Image Collections. ECCV, 2018]

focebook Artificial intelligence Resear

Objects: shape and appearance decomposition

Texture

[Kanazawa et al. Learning Category-Specific Mesh Reconstruction from Image Collections. ECCV, 2018]

focebook Artificial intelligence Resear

Objects: shape and appearance decomposition

[Kanazawa et al. Learning Category-Specific Mesh Reconstruction from Image Collections. ECCV, 2018]

I. Learning correspondences

factoria Attical realignee Resurc

Learning correspondences: image to image

image A image B Let g be the **correspondence field** between images A and B

Learning correspondences

image A

Factorized correspondence field: $q = \Phi_B^{-1} \circ \Phi_A$

3D geometry is irrelevant, we only need an index set over the object surface

Learning correspondences: image to 3D model

Learning correspondences

Supervised

- model-driven;
- data-driven.

Un/self-supervised

- equivariance;
- cycle consistency.

Model-driven: synthetic data

[Zhou et al. Learning Dense Correspondence via 3D-guided Cycle Consistency. ECCV, 2016]

Synthetic data: articulated objects?

[Joo et al. Panoptic studio: A massively multiview system for social interaction capture. PAMI, 2016]

[Loper, Mahmood, Romero, Pons-Moll, Black. SMPL: A Skinned Multi-Person Linear Model. SIGGRAPH Asia, 2015]

Synthetic data: articulated objects?

[Varol et al. "Learning from Synthetic Humans". CVPR, 2017] Very different image statistics!

Model-driven: sparse annotations + fitting

[Güler et al. "DenseReg: Fully Convolutional Dense Shape Regression In-the-Wild". CVPR, 2017]

Full body articulation?

[Lassner et al. "Unite the People: Closing the Loop Between 3D and 2D Human Representations". CVPR, 2017]

Poor approximation of real data!

Data-driven approach: DensePose

[Güler et al. "DensePose: learning dense correspondences in the wild". CVPR, 2018]

Eliminates dependency on a specific 3D model and its expressivity (as long as semantics is preserved) No domain gap, annotations are easier to obtain

Human annotation errors can be significant due too ambiguities

Dense correspondence task

COCO-DensePose dataset

Annotation task 1: body part segmentation

COCO-DensePose dataset

Annotation task 2: marking sparse correspondences

COCO DensePose: Collecting Data

/Desc D1 #Adjust (A Brinds Dn 2) Billion (Dn 2) Billion (Dn 2) Billion (Dn 2)

/ Now to Target Mill / Joon In () / Joon () at (3) / Head Joon (055)

Red No per in this trape Units last segmentation. Economic Instru

Eps: Using "Move to taget" (M) and "Zoom In" (I) for the small object! Use CH-Z to unde a click. Nease do Chiy 1 object at each turn. Image id: 195 Draw multicle oblogons if readed!)

Segment the LowerLegLett

Task - 1 Part Segmentation

COCO-DensePose dataset

50 annotated instances, 5 million correspondences (-100 points/image)

Evaluation metric: geodesic distance

For instance based frameworks:

$$\text{GPS}_j = \frac{1}{|P_j|} \sum_{p \in P_j} \exp\left(\frac{-g(i_p, \hat{i}_p)^2}{2\kappa^2}\right)$$

geodesic point similarity (GPS)

Architecture: DensePose-RCNN

[He, Gkiosari, Dollar, Girshiek. Mask-RCNN. ICCV, 2017]

github.com/facebookresearch/DensePose

facebook Artificial Intelligence Research

Textures taken from SURREAL dataset. Verol, Gill, et al. "Learning from synthetic humans." CVPR 2017.

Real-time demos on desktop & mobile

DensePoseTrack dataset

[Andriluka et al. PoseTrack: A Benchmark for Human Pose Estimation and Tracking, CVPR, 2018]

DensePoseTrack dataset

[Neverova et al. Slim DensePose: Thrifty Learning with Motion Cues. CVPR, 2019]

Labeled images: 1680 / 782 (training / validation) Instances: 8274 / 4753 Correspondences: 800142 / 459348 Every 2rd frame for 4 frames, every 8th frame otherwise Ignored: instances with <6 keypoints, severe motion blur
Flow-guided 3D DensePose-RCNN

Learning correspondences

Supervised

- model-driven;
- data-driven.

Un/self-supervised

- equivariance;
- cycle consistency.

Learning with less supervision?

factors Attical statigence Research

Cost efficient annotation process

full annotations full dense annotations sparse annotations keypoints (Neverova et al. Slim DensePose: Thrifty Learning with Motion Cues. CVPR, 2019)

Cost efficient annotation process

Correspondences by self-supervision

GT propagation & equivariance [Neverova et al. Slim DensePose. Thrifty Learning with Motion Cues. CVPR, 2019] Cycle-consistency [Kulkarni et al. Canonical Surface Mapping via Geometric Cycle Consistency. ICCV, 2019]

GT propagation vs equivariance

Transfer a given label to a new frame

GT propagation

Constrain unknown labels to be consistent

equivariance

Synthetic equivariance: thin-plane splines (TPS)

Synthetic equivariance: thin-plane splines (TPS)

The known mapping between points in a pair of original-deformed frames is used both for data augmentation (sparsely) and enforcing equivariance (densely).

Flow-guided temporal equivariance

Optical flow is used both for data augmentation (sparse points) and enforcing inter-frame temporal equivariance (densely)

Flow-guided temporal equivariance

Real transform >> synthetic

GT propagation >> equivariance

Combination > individual

Cycle-consistency

II. Reconstruction

factors Attical statigence Research

3D reconstruction

3D-supervised

- synthetic data;
- multi-view data / video;
- manual annotations (?).

2D-supervised

Model-based 3D reconstruction

[DenseRac: Joint 3D Pose and Shape Estimation by Dense Render-and-Compare. ECCV, 2018]

Synthetic Data from Virtual World

facebook Reality Labs

Mixamo (www.mixamo.com)

Offering free animated 3D characters

Thousands of customizable 3D animations

Differentiable rendering

facebook Reality Labs

Learning with less supervision?

factori Attical statigets Resurt

3D reconstruction with 2D supervision

[Novotny, Ravi et al. C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion. ICCV, 2019]

Canonicalization network

From sparse landmarks to dense annotations

Qualitative results on synthetic renderings using the SMPL model

III. Generation

factors Attical statigence Research

Generation

Mapping from image to texture space

focebook Artificial Intelligence Research

Textures taken from SURREAL dataset. Verol, Gill, et al. "Learning from synthetic humans." CVPR 2017. focebook Artificial Intelligence Research

Input Image

Target Image

Inpainted Texture Transfer

[Neverova et al. Dense Pose Transfer [CVPR, 2019]

Texture inpainting in UV space

The inpainting network learns to reconstruct **full body texture** from **partial observations** by autoencoding in a normalized texture space

Two stream model

The inpainting network introduces generalization over the pose space for free

DensePose vs sparse keypoints conditioning

Conditioning on DensePose resolves ambiguity in z-ordering and encourages anatomical plausibility

From fits-them-all to personalized models

factors Attical statigence Research

[Wang, Liu, Zhu, Liu, Tao, Kautz, Catanzaro. Video-to-Video Synthesis. NeurIPS, 2018]

Vid2game: creating controllable characters

[Gafni, Wolf, Taigman. Vid2Game: Controllable Characters Extracted from Real-World Videos. arXiv:1904.08379, 2019]

Vid2game: creating controllable characters

DensePose representation of the next frame is predicted conditioned on a current DensePose and an instruction
Vid2game: creating controllable characters

The new frame is rendered through decomposition: active character (predicted) + background (copied)

facebook Artificial Intelligence Research

Target Video

Evaluation - Walking (Controllable Results)

Artificial Intelligence Research

... and more personalization

factori Attical statigets Resurt

90 cameras capturing 11MP @ 90fps, 350 lights

facebook Reality Labs

Ground Truth (novel view)

Rendered Avatar (novel view)

facebook Reality Labs

Questions?

facebook Artificial Intelligence Research

Accebeck ArcFicial Intelligence Reset

