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Outline

Part 1: Intuition, Inference and Training

e Building intuitions: From Feedforward to Recurrent Models
e Inference in RNNs: Fprop
e Training in RNNs: Backpropagation-through-time (BPTT)
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Outline

Part 2: Gated models & Applications

e Long Short-term Memory (LSTMs)
e Gated Recurrent Units (GRUS)
e Applications:
o Image captioning
Sequence classification (Practical 4: MNIST)
Language modeling
Sequence-labeling (lots of NLP tasks, e.g. POS tagging, NER, ...)
Sequence-to-sequence learning (Machine translation, Dialogue modeling, ...)
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Recurrent Models

PART 1: Intuition, Inference and Training
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Introduction ?
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We need to be able to remember information
from previous time steps



Recurrent neural networks: Intuition




Long-term dependencies: Why do they matter?

Michel C. was born in Paris, France. He is married and has three children. He received a M.S.
in neurosciences from the University Pierre & Marie Curie and the Ecole Normale Supérieure in 1987,
and and then spent most of his career in Switzerland, at the Ecole Polytechnique de Lausanne. He
specialized in child and adolescent psychiatry and his first field of research was severe mood disorders
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Types of Sequence Models
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Types of Sequence Models
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Types of Sequence Models :
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Types of Sequence Models
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FENs

Classify following examples:




FENs vs RNNs
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FENs vs RNNs PREDICT: 9
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FENs vs RNNs PREDICT: 2
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FENs

But what if these were not digits, but longer numbers?
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~FNs vs RNNs
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~FNs vs RNNs
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Maintains a state (memory) that carries information between inputs!

~FNs vs RNNs
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The RNN API

prev_state =—P —P next state

X —P outputs




The RNN Gomputation Graph

f t-1 “Feedback loop” / state / memory / stack
7 (previous time-step)




“Unrolling” the RNN Computation Graph
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Unrolling the RNN Gomputation Graph
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Unrolling the RNN Gomputation Graph
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Unrolling the RNN Gomputation Graph
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Unrolling the RNN Computation Graph

NB: We reuse the same
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The FEN API

class FeedForwardModel():

# .
A
def (self, x): ['[ hy
# Compute activations on the hidden Layer.
hidden_layer = self.act_fn(np.dot(self.W_xh, x) + b) f9
A
# Compute the (linear) output Layer activations. -[4yr
y = np.dot(self.W_hy, hidden_layer) zh

return
y X
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The RNN API

class RecurrentModel():

# .
A
def (self, x, prev_state): L[ hy
# Compute the new state based on the previous state and current input.
new_state = self.act_fn(np.dot(self.W_xh, x) + np.dot(self.W_hh, prev_state) + b) f9
'\
# Compute the output vector. -[4yr
y = np.dot(self.W_hy, new_state) zh

return new_state, y X

t-1
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The RNN API

class RecurrentModel():

def recurrent_fn(self, x, prev_state):

~ —A-Compute Lhe pew_stale based on_the previous state and curcent wput
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# Compute the output vector.
y = np.dot(self.W_hy, new_state)

return new_state, y




ThB RNN API New Recurrent Input at
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class RecurrentModel():
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def recurrent_fn(self, x, prev_state):
# Compute the new state based on the previous state and current input.

new state = self.act fn(np.dot(self.W xh, x) + np.dot(self.W_hh, prev_state))

# Compute the output vector.

: y = np.dot(self.W_hy, new_state) :

return new_state, y
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The RNN API

def (self, data_sequence, initial_state):
state = initial state
all states, all_ys = [state], []

cache = []
for x, y in data_sequence:
new_state, y_pred = recurrent_fn(x, state)

loss += cross_entropy(y_pred, y)

cache.append((new_state, y_pred))

state = new_state

return loss, cache
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The RNN API
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NOTATION: th is a matrix that

Math FFNS \V RNNS maps a vector x into a vector h.

h = fo(Wznx + b) yﬂ
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NOTATION: th is a matrix that

Math FFNS V RNNS maps a vector x into a vector h.

Hidden layer
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function Input Why




Math: FFNs v RNNs
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Math: FFNs v RNNs
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Math: FFNs v RNNs maps a vector ¥ ino 4 vector .
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Inference & Training

e How do we make predictions using RNNs?
o Forward propagation: “Fprop”
o Essentially a composition of functions: a, = [ (f (x)).
o  We “unroll” the computational graph over time-steps.



Training: Ways to Train RNNs

e Echo State Networks: Initialize W, W, . W, . caretully, then only train W, |
e Backpropagation through time (BPTT): Propagate errors backwards
through the unrolled graph.

e There are other options.



Training: ESNs

e Simple solution: don’t train the recurrent weights (W,, & W__ )!

e Initialization very important.

e Super simple. However, with recent improvements in initialization etc, BPTT
does better!
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Inference & Training

e How do we train RNNs?

Propagate errors backwards through unrolled graph: “Backprop-through time” (BPTT).
We need to consider predictions over several time-steps!

Credit assignment over time.

We work backwards in time from the last state to the first.
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Training: BPTT Intuition
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Training: Truncated BPTT

Loss
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Training: Truncated

BPTT

Loss

Carry hidden states
forward in time forever,
but only backpropagate
for some smaller
number of steps



Training: Truncated BPTT
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Unrolling the RNN Gomputation Graph
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Unrolling the RNN Computation Graph

“Unrolled” over n time-steps.




Unrolling the RNN Computation Graph

Step 1: Compute all errors.

“Unrolled” over n time-steps.




Step 1: Compute all errors.
Step 2: Pass error back for each

Unrolling the RNN Computation Graph  me-step from nbackio 1

“Unrolled” over n time-steps.



Unrolling the RNN Computation Graph

Step 1: Compute all errors.
Step 2: Pass error back for each
time-step from n back to 1.

Step 3: Update weights.

“Unrolled” over n time-steps.




Unrolling the RNN Gomputation Graph
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Unrolling the RNN Gomputation Graph
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Unrolling the RNN Gomputation Graph
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Unrolling the RNN Computation Graph
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Unrolling the RNN Computation Graph
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Unrolling the RNN Computation Graph
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Unrolling the RNN Computation Graph
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Unrolling the RNN Computation Graph
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Unrolling the RNN Computation Graph
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Unrolling the RNN Computation Graph
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Training: Truncated BPTT Code || ./, ..

def (model, X train, y train, initial state):
# Forward
Loss, caches = forward(X_train, y_train, model, initial_state)
avg_loss /= y_train.shape[9] “Lego block”!
# Backward
dh_next = np.zeros((1, last_state.shape[0]))

grads = {k: np.zeros_like(v) for k, v in model.items()}

for t in reversed(range(len(X_train))):
grad, dh_next = cell_fn_backward(ys[t], y_train[t], dh_next, caches[t])
for k in grads.keys():
grads[k] += grad[k]

return grads, avg_loss



%Agﬂ
%Agﬂ

Training: Truncated BPTT Code || ./, ..

def (model, X train, y train, initial state):

# Forward

Loss, caches = forward(X_train, y_train, model, initial_state)

avg_loss /= y_train.shape[9] “Lego block”!
# Backward

dh_next = np.zeros((1, last_state.shape[0]))

grads = {k: np.zeros_like(v) for k, v in model.items()} Total gradient = Sum of these

lego-gradients over time!

for t in reversed(range(len(X_train))):
grad, dh_next = cell_fn_backward(ys[t], y_train[t], dh_next, caches[t])
for k in grads.keys():

grads[k] += grad[k] ('
OFErorarn 0, E;
return grads, avg_loss 699 B é??lf}
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Vanilla RNN Gradient Flow
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Vanilla RNN Gradient Flow

Backpropagation from h,
to h,_, multiplies by W
(actually W_T)

hy = tanh(Wpphe—1 + Winay)

] = tanh ((Whh Wha ) (h;:))
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Vanilla RNN Gradient Flow
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Vanilla RNN Gradient Flow
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Vanilla RNN Gradient Flow

s N s A e A s D
W—> ——* tanh W—> ——*> tanh W-’QZ tanh W—b ——* tanh
o o o :
h 0 <= stack L_> h1 T stack L_> h2 —I—* stack L_> h3 > stack L_, h4
\ T 4 \ T / - T 4 - I v
X1 X2 X3 X4
Computing gradient Largest singular value > 1: |~ Gradient clipping: Scale
of h, involves many Exploding gradients gradient if its norm is too big
factors of W _ grad_norm = np.sum(grad * grad)
Largest singular value < 1: if grad_norm > threshold:

(and repeated tanh) Vanishing gradients grad *= (threshold / grad_norm)



Vanilla RNN Gradient Flow

@ N i N r N P R
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Vanishing gradients — Change RNN architecture

Part 2!
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RECAP: The RNN API
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The GATED RNN API

prev_state =—P»
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Memory
Cell

I Gates

Controller
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It is the same! Just a different
way of computing the outputs.
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Implementing a memory cell in a neural network

To preserve information for a long time in
the activities of an RNN, we use a circuit
that implements an analog memory cell.
— Alinear unit that has a self-link with a
weight of 1 will maintain its state.

— Information is stored in the cell by
activating its write gate.

— Information is retrieved by activating
the read gate.

— We can backpropagate through this

circuit because logistics are have nice input from output to
derivatives. rest of RNN rest of RNN




Propagating through a memory cell
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LSTM
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LSTM

Ht-1 >

Actually forget

Ct-1  —

tanh

@ Neurod net. (ayers
@ Elenment—wise operotions

Ht

Ct



I.STM What's +he new volue’

Whot +o Mﬁd&fé?

4 )
Ht-1 > » Ht
tanh
Ct-1 — | > (t
\ J

@ Neurod net. (ayers @
@ Element-wise operations



LSTM
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LSTM
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LSTIM = Long Short Term Memory

LSTM

Xt concatenation
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r = o(X.W-r + br)
X' = tanh(X.Wc + bc)
Ct = f * Ct-a+u * X
He = r * tanh(Ct)

Y, = softmax(H_.W + b)

t






Gated Recurrent Units (GRUs) o
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Gated Recurrent Units (GRUs) o

GRU - Goted X=X | H_, pan
Recurrent Unit

(Z = G(X.Wz + bz) 77

Z 9goAfes instead ——
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Long Short-term Memory (LSTM): Gradient Flow

[Hochreiter et al., 1997]

t-1 \ E el O

Backpropagation from c, to
C, , only elementwise
multiplication by f, no matrix
multiply by W

) o
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g tanh

ctc=fOc_1+10g
ht = o ® tanh(c;)



Long Short-term Memory (LSTM): Gradient Flow

[Hochreiter et al., 1997]
Uninterrupted gradient flow!
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Applications/Tasks

Image captioning
Sequence classification (Practical 4: MNIST)

Language modeling
Sequence-labeling (lots of NLP tasks, e.g. POS tagging, NER, ..
Sequence-to-sequence learning (Machine translation, Summarization, ..

one to many
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One-to-Many: Image captioning
GOAL: Given image, generate a sentence to describe its content.
“hat”

“straw” END

START “straw” “hat”



“straw” “hat” END

) . .‘ N
‘man in black shirt is playing ‘construction worker in orange "two young girls are playing with "boy is doing backflip on

guitar.” safety vest is working on road.” lego toy." wakeboard.



Many-to-one: Sequence Classifier (Prac 4)

GOAL: Given a sequence of inputs, predict the label for the whole sequence.
Examples:

e (iven a sentence, say if it is {negative, neutral, positive}
e Given the words in an email, predict if it is a spam message.
e (Given “pieces” of an image, predict what number is in the image.



Many-to-1: Polarity/Sentiment Classifer

We feed all the words into the model one at a time,

and make one prediction at the end:

" f9 1h,

A

are

" f@ — | h;

awesome



Many-to-1: Spam Classifer

We feed all the words into the model one at a time, Spam/Ham?
and make one prediction at the end:

h, ] f9 1hy ] f9 Thy [ f9 — |

j } }

Viagra for cheap




Many-to-1: Image Classifier (Prac 4)

We chop up the image and feed all the pieces through
the model, and then make one prediction at the end:

0 =f9

1 Jo

1 Jo




Next-token Prediction: Language modeling

1. Computing p(next word | previous words)
m™m

2. p(T1,Toy ...y Tp) = Hp(a:”a:l o Ti1)
)

p(the) p(cat|the) p(sits|the cat) p(x_|-..)

| | |

h, ] f9 1hy ] f9 hy— 7 —h

| |

the cat




Next-token Prediction: Language modeling




Many-to-many: Sequence labeling

e Mapping eachinputx,x , ..., x toitsownlabely,y,..,y.
e (Notice: Same length m; each input has an output.)
e Alot of NLP Tasks fall in this category, e.g.:

o Part-of-speech tagging: map words to their parts-of-speech (noun, verb, etc).
o Named-entity Recognition: identify mentions of people, places, etc in text
o Semantic Role Labeling: find the main actions, and who performs them on whom/what



Many-to-many: Sequence labeling

e Part-of-speech tagging

vessel



Many-to-many: Sequence labeling

e Part-of-speech tagging

o
@%’é\
L @b@Ve®
/& e e e

Janet will back the bill




Many-to-many: Sequence labeling

Heat water in a large vessel.

VERB NOUN

| |

hy " f9 1h, " f@ 1h,

heat water




Many-to-many: Sequence-to-Sequence Modeling

Mapping input sequences {x , X , ..., X_} to output sequences{y .y, ...,y }.
Note: Arbitrary m and n.

Many applications, most notably Machine Translation.

Also: POS tagging, Parsing, Summarization, Dialog



MACHINE

Many-to-many: Sequence-to-Sequence Modeling ransiarion

Encoder RNN
Decoder RNN ]
la maison bleu <eos>
> —_— > —_— > —_—

I e e

the blue house <s> la maison bleu



DIALOGUE

Many-to-many: Sequence-to-Sequence Modeling  wvobeine

Prompt: You can’t eat pasta every day. You can’t live only on Italian food.

System: I don’t eat Italian food, but I do eat a lot of Italian food.



Many-to-many: Sequence-to-Sequence Modeling

Prompt: What do you have planned tonight?

Baseline: I have no idea what I want to do with my life. I have no idea what I want
to (Bad, Mediocre, Bad)

Ours: I was planning on doing a few of these, but I'm not sure what to choose. I
need to find a place to camp, and I don’t have a lot of time to make a plan.
(Excellent, Good, Mediocre)



Many-to-many: Sequence-to-Sequence Modeling

Prompt: Have you seen Suicide Squad?’

Baseline: I have not, but I will check it out. (Good, Good, Good)

Ours: [ saw it in a theater once and it was great. It was very... I don’t know, a little
dark. I like the psychological effects and the way it portrays the characters in the
movie. (Excellent, Excellent, Excellent)



Key take-aways

e RNNs have memory/state that evolve over time.
e We unroll the graph over time to do forward propagation.
e Backprop-through-time (BPTT):
o Perform Chain Rule over the unrolled graph efficiently by saving and reusing previous

computations.
o dE/dW is sum over all time-steps (b/c of tied weights)

e Vanishing/exploding gradients
e Gated architectures

o  State is selectively overwritten per time-step
o  Uninterrupted gradient flow through time: no vanishing/exploding gradients!

e Lots of cool applications!



Slide Credits

Thank-you to the following resources, from which some of these slides were
drawn and adapted.

e Stanford CS231n
e TensorFlow without a PhD



http://cs231n.stanford.edu/
https://cloud.google.com/blog/big-data/2017/01/learn-tensorflow-and-deep-learning-without-a-phd




