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Outline
Part 1: Intuition, Inference and Training

● Building intuitions: From Feedforward to Recurrent Models
● Inference in RNNs: Fprop
● Training in RNNs: Backpropagation-through-time (BPTT)

SHORT BREAK



Outline
Part 2: Gated models & Applications

● Long Short-term Memory (LSTMs)
● Gated Recurrent Units (GRUs)
● Applications:

○ Image captioning
○ Sequence classification (Practical 4: MNIST)
○ Language modeling
○ Sequence-labeling (lots of NLP tasks, e.g. POS tagging, NER, …)
○ Sequence-to-sequence learning (Machine translation, Dialogue modeling, …)



Recurrent Models
PART 1: Intuition, Inference and Training
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We need to be able to remember information 
from previous time steps



Recurrent neural networks: Intuition



Michel C. was born in Paris, France. He is married and has three children. He received a M.S. 
in neurosciences from the University Pierre & Marie Curie and the Ecole Normale Supérieure in 1987, 
and and then spent most of his career in Switzerland, at the Ecole Polytechnique de Lausanne. He 
specialized in child and adolescent psychiatry and his first field of research was severe mood disorders 

in adolescent, topic of his PhD in neurosciences (2002). His mother tongue is   ? ? ? ? ?

Short context
English,
German,
Russian,
French … 

Long context       Problems… 

Hn
… 

Michel C. was born in

French

…

Hn-1

Long-term dependencies: Why do they matter?
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We’ll talk about this a little later. We’ll 
also implement this in today’s practical!

?
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FFNs vs RNNs
Classify following examples:

, , , …
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FFNs vs RNNs
But what if these were not digits, but longer numbers?

, ,

Problem? Variable length inputs.



softmax

tanh

X: inputs at step t

Y: outputs

RNN cell

H

Xt

Yt

FFNs vs RNNs

, , , …

     1?



softmax

tanh

X: inputs at step t

Y: outputs

H: internal
  state

RNN cell

H

Xt

Yt

H at t-1

FFNs vs RNNs

, , , …

     19?

     “1”



softmax

tanh

X: inputs at step t

Y: outputs

H: internal
  state

RNN cell

H

Xt

Yt

H at t-1

Maintains a state (memory) that carries information between inputs!FFNs vs RNNs

, , , …

  “19”

 “192”?



The RNN API

prev_state

x

next_state

outputs

recurrent_fn()



The RNN Computation Graph

xt

yt

“Feedback loop” / state / memory / stack
(previous time-step)t-1



“Unrolling” the RNN Computation Graph
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Unrolling the RNN Computation Graph

x1

h0 h1

y1

x2

h2

y2

x3

hn...

yn
NB: We reuse the same 
weights at every time-step!

The same 

We can therefore think of an RNN as a 
composition of identical feedforward neural 
networks (with replicated/tied weights), one 
for each moment or step in time.

“Unrolled” over n time-steps.



The FFN API
class FeedForwardModel():

  

  # ...

 

  def forward(self, x):

    # Compute activations on the hidden layer.

    hidden_layer = self.act_fn(np.dot(self.W_xh, x) + b)

      

    # Compute the (linear) output layer activations.     

    y = np.dot(self.W_hy, hidden_layer)

    

    return y x

y
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The RNN API
class RecurrentModel():

  

  # ...

  def recurrent_fn(self, x, prev_state):

    # Compute the new state based on the previous state and current input.  

    new_state = self.act_fn(np.dot(self.W_xh, x) + np.dot(self.W_hh, prev_state) + b)

    # Compute the output vector.

    y = np.dot(self.W_hy, new_state)

    return new_state, y xt

yt

t-1
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The RNN API

  def forward(self, data_sequence, initial_state):

    state = initial_state

    all_states, all_ys = [state], []

    cache = []

    for x, y in data_sequence:

      new_state, y_pred = recurrent_fn(x, state)

      loss += cross_entropy(y_pred, y)

      

cache.append((new_state, y_pred))

      state = new_state

    return loss, cache
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Math: FFNs v RNNs
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Inference & Training
● How do we make predictions using RNNs?

○ Forward propagation: “Fprop”
○ Essentially a composition of functions: a2 = f2(f1(x)).
○ We “unroll” the computational graph over time-steps.

● How do we train RNNs?
○ Backward propagation: “Backprop-through time”
○ We need to consider predictions over several time-steps!
○ Credit assignment over time.
○ We work backwards in time from the last state to the first.



Training: Ways to Train RNNs
● Echo State Networks: Initialize Wxh, Whh, Who, carefully, then only train  Who!
● Backpropagation through time (BPTT): Propagate errors backwards 

through the unrolled graph. 
● There are other options.



Training: ESNs
● Simple solution: don’t train the recurrent weights (Whh & Wxh)!
● Initialization very important.
● Super simple. However, with recent improvements in initialization etc, BPTT 

does better!

[Scholarpedia]



Inference & Training
● How do we make predictions using RNNs?

○ Forward propagation: “Fprop”
○ Essentially a composition of functions: a2 = f2(f1(x)).
○ We “unroll” the computational graph over time-steps.

● How do we train RNNs?
○ Propagate errors backwards through unrolled graph: “Backprop-through time” (BPTT).
○ We need to consider predictions over several time-steps!
○ Credit assignment over time.
○ We work backwards in time from the last state to the first.

Error



Training: BPTT Intuition



Training: Truncated BPTT
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Unrolling the RNN Computation Graph

x1

h0 h1

y1

x2

h2

y2

x3

ht...

yt

“Unrolled” over n time-steps.

Step 1: Compute all errors.
Step 2: Pass error back for each 
time-step from n back to 1.
Step 3: Update weights.

E1 E2 Et
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Unrolling the RNN Computation Graph
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Unrolling the RNN Computation Graph

ht-2 ht-1 ht

yt Et

where



Total Error = E1 + E2 + … + Et
Total gradient = sum of all dEt/dθ’s

Unrolling the RNN Computation Graph

ht-2

yt-2

ht-1

yt-1

ht

yt EtEt-1Et-2

where



Training: Truncated BPTT Code
def bptt(model, X_train, y_train, initial_state):  

  # Forward

  Loss, caches = forward(X_train, y_train, model, initial_state)

  avg_loss /= y_train.shape[0]

  # Backward

  dh_next = np.zeros((1, last_state.shape[0]))

  grads = {k: np.zeros_like(v) for k, v in model.items()}

  for t in reversed(range(len(X_train))):

    grad, dh_next = cell_fn_backward(ys[t], y_train[t], dh_next, caches[t])

    for k in grads.keys():

        grads[k] += grad[k]

  return grads, avg_loss

Error

“Lego block”!
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  avg_loss /= y_train.shape[0]
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  for t in reversed(range(len(X_train))):

    grad, dh_next = cell_fn_backward(ys[t], y_train[t], dh_next, caches[t])

    for k in grads.keys():

        grads[k] += grad[k]

  return grads, avg_loss

Error

“Lego block”!

Total gradient = Sum of these 
lego-gradients over time!



Vanilla RNN Gradient Flow
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Vanilla RNN Gradient Flow



Vanilla RNN Gradient Flow

Part 2!



Gated Recurrent 
Models

PART II: Gated Architectures & Applications
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The GATED RNN API

prev_state

x

next_state

outputs

recurrent_fn()

Memory 
Cell

Controller

It is the same! Just a different 
way of computing the outputs.

Gates



Implementing a memory cell in a neural network



Propagating through a memory cell



Backpropagating through a memory cell?



LSTM
LSTM = Long Short Term Memory

X = X
t
 | H

t-1

f = σ(X.Wf + bf)
u = σ(X.Wu + bu)
r = σ(X.Wr + br)
X’ = tanh(X.Wc + bc)
Ct = f * Ct-1 + u * X’
Ht = r * tanh(Ct)

Y
t
 = softmax(H

t
.W + b)

tanh

tanh
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Xt

Ht-1 Ht
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× +

× ×
σ σ

Ct

concatenate :

forget gate :
update gate :
result gate :

input :
new C :
new H :

output :

p+n

n

n

n

n

n

n

vector sizes
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Output

Remember the result for next time step
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Gru !



Gated Recurrent Units (GRUs)
X = X

t
 | H

t-1

z = σ(X.Wz + bz)
r = σ(X.Wr + br)

X’ = X
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Long Short-term Memory (LSTM): Gradient Flow



Long Short-term Memory (LSTM): Gradient Flow



Applications/Tasks
● Image captioning
● Sequence classification (Practical 4: MNIST)
● Language modeling
● Sequence-labeling (lots of NLP tasks, e.g. POS tagging, NER, …)
● Sequence-to-sequence learning (Machine translation, Summarization, …)



One-to-Many: Image captioning
GOAL: Given image, generate a sentence to describe its content.



One-to-Many: Image captioning
GOAL: Given image, generate a sentence to describe its content.



Many-to-one: Sequence Classifier (Prac 4)
GOAL: Given a sequence of inputs, predict the label for the whole sequence.

Examples: 

● Given a sentence, say if it is {negative, neutral, positive}
● Given the words in an email, predict if it is a spam message.
● Given “pieces” of an image, predict what number is in the image.



Many-to-1: Polarity/Sentiment Classifer

h0 h1 h2 h3

Pos/Neg?We feed all the words into the model one at a time, 
and make one prediction at the end:

Cats are awesome



Many-to-1: Spam Classifer

h0 h1 h2 h3

Spam/Ham?We feed all the words into the model one at a time, 
and make one prediction at the end:

Viagra for cheap



Many-to-1: Image Classifier (Prac 4)

h0 h1 h2 h3

yimag

e

We chop up the image and feed all the pieces through 
the model, and then make one prediction at the end:



Next-token Prediction: Language modeling
1. Computing p(next word | previous words)

2.

p(the)

h0 h1 h2 h3

the

p(cat|the) p(sits|the cat)

cat

...

p(xm | ...)



Next-token Prediction: Language modeling

x1

h0 h1

x2

h2

x3

hn...

x3x2 xnx1



Many-to-many: Sequence labeling
● Mapping each input x1, x2, …, xn to its own label y1, y2, …, yn 
● (Notice: Same length m; each input has an output.)
● A lot of NLP Tasks fall in this category, e.g.:

○ Part-of-speech tagging: map words to their parts-of-speech (noun, verb, etc).
○ Named-entity Recognition: identify mentions of people, places, etc in text
○ Semantic Role Labeling: find the main actions, and who performs them on whom/what



Many-to-many: Sequence labeling
● Part-of-speech tagging



Many-to-many: Sequence labeling
● Part-of-speech tagging



Many-to-many: Sequence labeling

h0 h1 h2 hn...

NOUNVERB ...

heat water in

Heat water in a large vessel.



Many-to-many: Sequence-to-Sequence Modeling
● Mapping input sequences {x1, x2, … , xm} to output sequences {y1, y2, …, yn}.
● Note: Arbitrary m and n.
● Many applications, most notably Machine Translation.
● Also: POS tagging, Parsing, Summarization, Dialog



Many-to-many: Sequence-to-Sequence Modeling

the blue house <s>

la

la

maison

maison

bleu

bleu

<eos>

Encoder RNN

Decoder RNN

MACHINE 
TRANSLATION



Many-to-many: Sequence-to-Sequence Modeling
Prompt: You can’t eat pasta every day. You can’t live only on Italian food.

System: I don’t eat Italian food, but I do eat a lot of Italian food.

DIALOGUE 
MODELING



Many-to-many: Sequence-to-Sequence Modeling
Prompt: What do you have planned tonight?

Baseline: I have no idea what I want to do with my life. I have no idea what I want 
to (Bad, Mediocre, Bad)

Ours: I was planning on doing a few of these, but I’m not sure what to choose. I 
need to find a place to camp, and I don’t have a lot of time to make a plan. 
(Excellent, Good, Mediocre)



Many-to-many: Sequence-to-Sequence Modeling
Prompt: Have you seen Suicide Squad?

Baseline: I have not, but I will check it out. (Good, Good, Good)

Ours: I saw it in a theater once and it was great. It was very... I don’t know, a little 
dark. I like the psychological effects and the way it portrays the characters in the 
movie. (Excellent, Excellent, Excellent)



Key take-aways
● RNNs have memory/state that evolve over time.
● We unroll the graph over time to do forward propagation.
● Backprop-through-time (BPTT): 

○ Perform Chain Rule over the unrolled graph efficiently by saving and reusing previous 
computations.

○ dE/dW is sum over all time-steps (b/c of tied weights)

● Vanishing/exploding gradients
● Gated architectures

○ State is selectively overwritten per time-step
○ Uninterrupted gradient flow through time: no vanishing/exploding gradients!

● Lots of cool applications!



Slide Credits
Thank-you to the following resources, from which some of these slides were 
drawn and adapted.

● Stanford CS231n
● TensorFlow without a PhD

http://cs231n.stanford.edu/
https://cloud.google.com/blog/big-data/2017/01/learn-tensorflow-and-deep-learning-without-a-phd


The end.


