Gated Recurrent
Models

Stephan Gouws & Richard Klein

Outline

Part 1: Intuition, Inference and Training

e Building intuitions: From Feedforward to Recurrent Models
e Inference in RNNs: Fprop
e Training in RNNs: Backpropagation-through-time (BPTT)

SHORT BREAK

Outline

Part 2: Gated models & Applications

e Long Short-term Memory (LSTMs)
e Gated Recurrent Units (GRUS)
e Applications:
o Image captioning
Sequence classification (Practical 4: MNIST)
Language modeling
Sequence-labeling (lots of NLP tasks, e.g. POS tagging, NER, ...)
Sequence-to-sequence learning (Machine translation, Dialogue modeling, ...)

O O O O

Recurrent Models

PART 1: Intuition, Inference and Training

Introduction ?

1 2.9
— 90O 10

/ QOOOO 20
| ——ooooooooo 0
oactivotion

Funttions \\\ ooooooooooo 100
Q000000000000

28x28 e
pixels

R H B BEEEN HE N HE N L B
784

50 /{_M ax

Introduction ?

1 2.9
— 90O 10

/ QOO O O 20
| ——ooooooooo 0
activotion

Funestions \\\ ooooooooooo 100
QOOOOOQOOQOOQ 200
28x28 X /-
pixels

R H B BEEEN HE N HE N L B
784

50 /{_M ax

Introduction ?

T 2489
softmidx — @ 0 ® 10
gl Q0000 50
: ff—ooooooooo 0

activotion

Funestions \\\ ooooooooooo 100
QOOOOOQOOQOOQ 200
28x28 X 5
pixels

R HE E EEEE HE N HE N L B
784

We need to be able to remember information
from previous time steps

Recurrent neural networks: Intuition

Long-term dependencies: Why do they matter?

Michel C. was born in Paris, France. He is married and has three children. He received a M.S.
in neurosciences from the University Pierre & Marie Curie and the Ecole Normale Supérieure in 1987,
and and then spent most of his career in Switzerland, at the Ecole Polytechnique de Lausanne. He
specialized in child and adolescent psychiatry and his first field of research was severe mood disorders

R —
Short context
Michel (. was born in SN £ 19! jSA,

Ger mon,
H, Russion,
Freach ..

n-1

00000 O

French
/,0/73 context —> Froblenrs..

Types of Sequence Models

_ FFNs

fone to one\

J

activotion
functions

28x28
pixels

1 2.9
— Q9 0 ® 10

50 f[‘lLM X

/ QOOOO 20
| ——ooooooooo 0

\\\ 00000000000 100

OOOOOOQOOOOOO 200

HE E EEEN HE N N N { B
784

Types of Sequence Models

one to one one to many sstraw” “hat” END

Yt
Won
t t 11 .
> | Wi
Ty
? T M START “straw” “hat”

FFNs Image

_ Captioning /

Types of Sequence Models :

Q= il (35 - |
S g -
one to one onetomany / many to one \ .2

! I b t We’ll talk about this a little later. We’'ll
also implement this in today’s practical!

FENSs Imag.e . MNI$T
Captioning K predictor

<<<<<

Types of Sequence Models !

?
o W
sl Wi ;
n Y N hy
CNNj, Whi
: 2 Whe .
2 / Ll oS
START “straw” “hat”

many to one

one to one one to many

FENs Imag.e . MNI$T
Captioning predictor

_

Seq2Seq

00O
Types of Sequence Models %ﬁ L

" 2
e s
= = » == ‘ U.N. official Ekeus heads for Baghdad -

one to one one to many many to one many to many fmany to many\

Q= .= == n

Image MNIST Seq2Seq Sequence labeling
FFNs < _
Captioning predictor e.g. NER)

Types of Sequence Models

Q= el (34

one to one one to many many to one

FENs Imag.e . MNI$T
Captioning predictor

?
—— > W [Wo
= h ‘
Y e
v oo, Wi o - ‘
% | &
T “straw” “hat”

INRURUR I 111
PP us

many to many many to many

Sequence labeling

Seq2Seq ©.0. NER)

FENs

Classify following examples:

FENs vs RNNs

FFN

1 H

PREDICT: 1

\\;/\ S oAr \\/ SN P S
< AT /\/::\></;:\7>\7 4\
3 Q| K O_RUTAR .
NP NZ Y%

C> O 0000 () softmidox

S NS N
X o K oK

===2 IS -
SIS
SNE

FENs vs RNNs PREDICT: 9

C> C> ()C) () () () softmidox

\\;/\ <oSEE \\// ST K
< K PaS Py, Sy, NN
< P St X PR .

/ = - P ~
T N > ~ .
= | LF NN\ =N A V4 SN SN , A
= N NG RN

NS
< ST S/

— ——— e L >& B - X > < “4 S AN
— = — R S e . 2\
I I _—— L S NN\ e = NN TS =

FENs vs RNNs PREDICT: 2

NS S S SN A SN
/ N SOSETEREK N N << \
g Vs N Y VO Ve s Y
s 2 S SN AT T DA ~_\
P e A< 25X P St X PR ~_\
/ / | £ P~ P P N N N

FFN

FENs

But what if these were not digits, but longer numbers?

|

ll ||
Ill'ulllﬂllll I=
L]

[[Sm—— | |

Problem? Variable length inputs.

~FNs vs RNNs

; NNSSAD N A AN SN
/ NS SCSEESTSK NS S
/ D % 0 Ve e e =< | > \< - \
/ g 7> > - ~_" \ dy N 4= < | v B AN
P > < § S PR
/’{-C - (// = ~ O ~\‘ / =\ = ~\& ' A
= QO
RNN cell == —— el o [\
N - .

D O softmidix

< >< > >< > >< >
<

’ O] DJED D T
T X: /'/Z/Uéd'ﬁ oA 5%6ﬂ +

1, , ,lll }

Xt

~FNs vs RNNs

; H- internod
stotfe

T H
« 1 E

O
)

B .}

Maintains a state (memory) that carries information between inputs!

~FNs vs RNNs

@ H- internod
state

T H
Xt {

[N

p) N L

Y- outputs

ml
O

.

The RNN API

prev_state =—P —P next state

X —P outputs

The RNN Gomputation Graph

f t-1 “Feedback loop” / state / memory / stack
7 (previous time-step)

“Unrolling” the RNN Computation Graph

Ys

Unrolling the RNN Gomputation Graph

y1 y2

Unrolling the RNN Gomputation Graph

Ys

Y

/o

/o

X5

“Unrolled” over n time-steps.

Unrolling the RNN Gomputation Graph

NB: We reuse the same
weights at every time-step! | Y1 Y,

h,] f9 10,] f9 10,

A
)

_—

X4 X5

The same ()
“Unrolled” over n time-steps.

Unrolling the RNN Computation Graph

NB: We reuse the same
weights at every time-step! | Y1 Y,

hy " f9

/>

We can therefore think of an RNN as a
composition of identical feedforward neural

for each moment or step in time.

networks (with replicated/tied weights), one |

N |

_—
X2 X

The same ()
“Unrolled” over n time-steps.

The FEN API

class FeedForwardModel():

.
A
def (self, x): ['[hy
Compute activations on the hidden Layer.
hidden_layer = self.act_fn(np.dot(self.W_xh, x) + b) f9
A
Compute the (linear) output Layer activations. -[4yr
y = np.dot(self.W_hy, hidden_layer) zh

return
y X

The FEN API

class FeedForwardModel():

.
A
def (self, x): ['[hy
Compute activations on the hidden Layer.
hidden_layer = self.act_fn(np.dot(self.W xh, x) + b) f9
A
Compute the (linear) output Layer activations. -[4yr
y = np.dot(self.W_hy, hidden_layer) zh

return
y X

The FEN API

class FeedForwardModel():

.
A
def (self, x): ['[hy
Compute activations on the hidden Layer.
hidden_layer = self.act_fn(np.dot(self.W_xh, x) + b) f9
A
Compute the (linear) output Layer activations. -[4yr
y = np.dot(self.W_hy, hidden_layer) zh

return
y X

The FEN API

class FeedForwardModel():

.
A
def (self, x): ['[hy
Compute activations on the hidden Layer.
hidden_layer = self.act_fn(np.dot(self.W_xh, x) + b) f9
A
Compute the (linear) output Layer activations. -[4yr
y = np.dot(self.W_hy, hidden_layer) zh

return
y X

The FEN API

class FeedForwardModel():

.
A
def (self, x): ['[hy
Compute activations on the hidden Layer.
hidden_layer = self.act_fn(np.dot(self.W_xh, x) + b) f9
A
Compute the (linear) output Layer activations. -[4yr
y = np.dot(self.W_hy, hidden_layer) zh

return
y X

The RNN API

class RecurrentModel():

.
A
def (self, x, prev_state): L[hy
Compute the new state based on the previous state and current input.
new_state = self.act_fn(np.dot(self.W_xh, x) + np.dot(self.W_hh, prev_state) + b) f9
'\
Compute the output vector. -[4yr
y = np.dot(self.W_hy, new_state) zh

return new_state, y X

t-1

The RNN API

class RecurrentModel():

.
A
def (self, x, prev_state): L[hy
Compute the new state based on the previous state and current input.
new_state = self.act_fn(np.dot(self.W_xh, x) + np.dot(self.W_hh, prev_state) + b) f9
'\
Compute the output vector. -[4yr
y = np.dot(self.W_hy, new_state) zh

return new_state, y X

t-1

The RNN API

class RecurrentModel():

def recurrent_fn(self, x, prev_state):

~ —A-Compute Lhe pew_stale based on_the previous state and curcent wput

N

New

state

= |Jo

(Wenxd + W hhht—l)
Recurrent Input at Previous
function current state
time-step
Yi

1
: new_state = self.act_fn(np.dot(self.W_xh, x) + np.dot(self.W_hh, prev_state)) 1 !]Fkg t-1

Compute the output vector.
y = np.dot(self.W_hy, new_state)

return new_state, y

ThB RNN API New Recurrent Input at

state function current
time-step

class RecurrentModel():

Yt — Why ht

def recurrent_fn(self, x, prev_state):
Compute the new state based on the previous state and current input.

new state = self.act fn(np.dot(self.W xh, x) + np.dot(self.W_hh, prev_state))

Compute the output vector.

: y = np.dot(self.W_hy, new_state) :

return new_state, y

he = |fol(Wanxd + Wrihe 1

Previous
state

)

t-1

The RNN API

def (self, data_sequence, initial_state):
state = initial state
all states, all_ys = [state], []

cache = []
for x, y in data_sequence:
new_state, y_pred = recurrent_fn(x, state)

loss += cross_entropy(y_pred, y)

cache.append((new_state, y_pred))

state = new_state

return loss, cache

fo h,

fo

| 1
h fo h

The RNN API

def (self, data_sequence, initial_state):
state = initial state
all states, all_ys = [state], []

cache = []
for x, y in data_sequence:
new_state, y_pred = recurrent_fn(x, state)

loss += cross_entropy(y_pred, y)

cache.append((new_state, y_pred))

state = new_state

return loss, cache

fo h,

fo

| 1
h fo h

The RNN API

def (self, data_sequence, initial_state):
state = initial state
all states, all_ys = [state], []

cache = []
for x, y in data_sequence:
new_state, y_pred = recurrent_fn(x, state)

loss += cross_entropy(y_pred, y)

cache.append((new_state, y_pred))

state = new_state

return loss, cache

fo h,

fo

| 1
h fo h

NOTATION: th is a matrix that

Math FFNS \V RNNS maps a vector x into a vector h.

h = fo(Wznx + b) yﬂ

NOTATION: th is a matrix that

Math FFNS \V RNNS maps a vector x into a vector h.

Input Why

NOTATION: th is a matrix that

Math FFNS V RNNS maps a vector x into a vector h.

Activation Input Why
function

NOTATION: th is a matrix that

Math FFNS V RNNS maps a vector x into a vector h.

Hidden layer
Activation
function Input Why

Math: FFNs v RNNs

Hidden

h

layer

7

Activation

function

fut

New state

fo(Wan

Recurrent
function

(Wanz H b)

Input

L+t

Input at
current

time-step

NOTATION: W_, is a matrix that
maps a vector x into a vector h.

t-1

Math: FFNs v RNNs

Hidden

h

layer

Activation
function

fut

= /o

New state

Input

(W:Eh

Recurrent

function

L+t

Input at
current

NOTATION: W_, is a matrix that
maps a vector x into a vector h.

1 b)

+ Whnhi—1)

time-step

t-1

Math: FFNs v RNNs maps a vector ¥ ino 4 vector .

Hidden layer
o y
hl=[fd(Wilz 1+ b) :
Qc:;ieginon Input “Recurrent’ Wh y Wh h

% weights f9 g
ht — fQ(thxt + Whhht—l) Wan

New state ~ ~ecurrent Input at Previous X
function current state t

time-step

Inference & Training

e How do we make predictions using RNNs?
o Forward propagation: “Fprop”
o Essentially a composition of functions: a, = [(f (x)).
o We “unroll” the computational graph over time-steps.

Training: Ways to Train RNNs

e Echo State Networks: Initialize W, W, . W, . caretully, then only train W, |
e Backpropagation through time (BPTT): Propagate errors backwards
through the unrolled graph.

e There are other options.

Training: ESNs

e Simple solution: don’t train the recurrent weights (W,, & W__)!

e Initialization very important.

e Super simple. However, with recent improvements in initialization etc, BPTT
does better!

1
W A(
15 |\|||| \|
o J

H/
L.
teacher)
signal

W, | [Scholarpedia]

output (or

dynamical
reservoir

i I| | |‘|I

h'\ "H W

Inference & Training

e How do we train RNNs?

Propagate errors backwards through unrolled graph: “Backprop-through time” (BPTT).
We need to consider predictions over several time-steps!

Credit assignment over time.

We work backwards in time from the last state to the first.

0O O O O

Training: BPTT Intuition

Forward through entire sequence to

Backpropagation through time D e

T\

\/

Al

Training: Truncated BPTT

Loss

i

|

t

|

t

\/

Al

Run forward and backward
through chunks of the
sequence instead of whole
sequence

Training: Truncated

BPTT

Loss

Carry hidden states
forward in time forever,
but only backpropagate
for some smaller
number of steps

Training: Truncated BPTT

S JTIAN
L N N L £l E f
I*I+I*I+I+I* *I+I +I»I+ L] *I*I
OO0 EEgEE B B

Unrolling the RNN Gomputation Graph

Ys

Y

/o

/o

X5

“Unrolled” over n time-steps.

Unrolling the RNN Computation Graph

“Unrolled” over n time-steps.

Unrolling the RNN Computation Graph

Step 1: Compute all errors.

“Unrolled” over n time-steps.

Step 1: Compute all errors.
Step 2: Pass error back for each

Unrolling the RNN Computation Graph me-step from nbackio 1

“Unrolled” over n time-steps.

Unrolling the RNN Computation Graph

Step 1: Compute all errors.
Step 2: Pass error back for each
time-step from n back to 1.

Step 3: Update weights.

“Unrolled” over n time-steps.

Unrolling the RNN Gomputation Graph

Yio Yiq Yy

| | |

h, 1 fo F—h, — fo F—in,

Unrolling the RNN Gomputation Graph

Yio

|

t-2

Yiq

fo

|

t-1

fo

E

t

Unrolling the RNN Gomputation Graph

t-2

fo

t-1

fo

E

t

Unrolling the RNN Computation Graph

t-2

fo

t-1

fo

Unrolling the RNN Computation Graph

t-2

fo

t-1

fo

Unrolling the RNN Computation Graph

t-2

fo

t-1

Oh_1

\4

fo

Unrolling the RNN Computation Graph

t-2

fo

1

Oh_1

\4

fo

Unrolling the RNN Computation Graph

Ohi—1

Oh;y_o

Ohy
Oh_1

fo

E

t
5.;1,5

Unrolling the RNN Computation Graph

Ohi—1 Oh
aht—? Bht_l

fo

E

t
OFE;

Oh,

KBEt dEi aht
Z Ohy 8ht
where
Ohy Ohy,

_Ht

~

Oh k=t'+19n,

_

/

Unrolling the RNN Computation Graph

Yio |Eiz Yiq

OF; _o Ohy_1 4
Tl Ohi—2 Bhy_, Tl

<

fo

(o

~

OB, _ Z OE, b
Et-1 yt Et 00 dh; 3ht
3‘?5_1 Oh; T l % where
Ml Bhyy | | oo, Sh
b ohy — Me=tr1g,
ht t k—1
fo _)

(I'otal Error=E , +E, +... +E,
Total gradient = sum of all dE /d6’s

OErorar 0) , E;
06 96

_ZaEt

-

~

Training: Truncated BPTT Code || ./, ..

def (model, X train, y train, initial state):
Forward
Loss, caches = forward(X_train, y_train, model, initial_state)
avg_loss /= y_train.shape[9] “Lego block”!
Backward
dh_next = np.zeros((1, last_state.shape[0]))

grads = {k: np.zeros_like(v) for k, v in model.items()}

for t in reversed(range(len(X_train))):
grad, dh_next = cell_fn_backward(ys[t], y_train[t], dh_next, caches[t])
for k in grads.keys():
grads[k] += grad[k]

return grads, avg_loss

%Agﬂ
%Agﬂ

Training: Truncated BPTT Code || ./, ..

def (model, X train, y train, initial state):

Forward

Loss, caches = forward(X_train, y_train, model, initial_state)

avg_loss /= y_train.shape[9] “Lego block”!
Backward

dh_next = np.zeros((1, last_state.shape[0]))

grads = {k: np.zeros_like(v) for k, v in model.items()} Total gradient = Sum of these

lego-gradients over time!

for t in reversed(range(len(X_train))):
grad, dh_next = cell_fn_backward(ys[t], y_train[t], dh_next, caches[t])
for k in grads.keys():

grads[k] += grad[k] ('
OFErorarn 0, E;
return grads, avg_loss 699 B é??lf}
B o6

Vanilla RNN Gradient Flow

t-1

— h

y ™\
W—>©—> tanh
L
> stack
A
_ J

X

"Lt — tanh(Whhht_l + thfl?t)

— tanh ((Whh Wiha) (

— tanh (W (

hi—1

Lt

)

he—1

t

)

Vanilla RNN Gradient Flow

Backpropagation from h,
to h,_, multiplies by W
(actually W_T)

hy = tanh(Wpphe—1 + Winay)

] = tanh ((Whh Wha) (h;:))

B CTED)

T
“:’

ht-1 -

Vanilla RNN Gradient Flow

Al

Al

Computing gradient
of h, involves many

factors of W

(and repeated tanh)

Vanilla RNN Gradient Flow

r ™
W—()= tann
]
h ——> st:Ick L—»
0+——
- T v

Computing gradient
of h, involves many
factors of W

(and repeated tanh)

Al

All

4]
2
=

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Vanilla RNN Gradient Flow

s N s A e A s D
W—> ——* tanh W—> ——*> tanh W-’QZ tanh W—b ——* tanh
o o o :
h 0 <= stack L_> h1 T stack L_> h2 —I—* stack L_> h3 > stack L_, h4
\ T 4 \ T / - T 4 - I v
X1 X2 X3 X4
Computing gradient Largest singular value > 1: |~ Gradient clipping: Scale
of h, involves many Exploding gradients gradient if its norm is too big
factors of W _ grad_norm = np.sum(grad * grad)
Largest singular value < 1: if grad_norm > threshold:

(and repeated tanh) Vanishing gradients grad *= (threshold / grad_norm)

Vanilla RNN Gradient Flow

@ N i N r N P R
W— = tanh W— =~ tanh W-’QZ tanh W— = tanh
L L i i
h . <" stack —> h1 <" stack —> h2 <" stack —> h3 - " stack —> h4
A T 4 A T _d A T 4 A Alt _4
X1 X2)(3 X4

Largest singular value > 1:

Computing gradient _)
Exploding gradients

of h, involves many
factors of W
(and repeated tanh)

Largest singular value < 1:

Vanishing gradients — Change RNN architecture

Part 2!

Gated Recurrent

Models

PART ll: Gated Architectures & Applications

RECAP: The RNN API

prev_state =—P»

hi = fo(Waenxd + Whiphe 1)

New state Recurrent Input at Previous
function current state
time-step

~

—P next state

—P outputs

The GATED RNN API

prev_state =—P»

-

A

Memory
Cell

I Gates

Controller

_

~

It is the same! Just a different
way of computing the outputs.

—P next state

—P» outputs

J

Implementing a memory cell in a neural network

To preserve information for a long time in
the activities of an RNN, we use a circuit
that implements an analog memory cell.
— Alinear unit that has a self-link with a
weight of 1 will maintain its state.

— Information is stored in the cell by
activating its write gate.

— Information is retrieved by activating
the read gate.

— We can backpropagate through this

circuit because logistics are have nice input from output to
derivatives. rest of RNN rest of RNN

Propagating through a memory cell

é # o

/

| d d
“ rea rea '
\/
1.7 90

time -

Backpropagating through a memory cell?
keep kep
- =
| read read
0 0 <
\ 4 \ 4
1.7

\ 4

. i P
time =

[STV - Lory Short Term Me/wm’/v

I_STM vector sizes

concotenote - X = X,c | H,c_1 y2%

/O@g%ﬂa/%g; f = G(X.Wf + Z)f) Z
updote gote . U = O(X.Wu + bu) <
result gote - r = O(X.Wr + br) 7
Py = /'/7/01/(%‘: X = tanh(X.Wc + bc) <

vew C - Ce = F % Cec14+ u * X»
il ~ »ew H He = r * tanh(Ct) -

é output - Y = softmax(H_.W + b) m

LSTM

Ht-1 >

Ct-1 —

tanh

@ Neurod net. (ayers
@ Elenment—wise operotions

Ht

Ct

LSTM

concoteniotion

Ht-1 >

Ct-1 —

tanh

@ Neurod net. (ayers
@ Elenment—wise operotions

Ht

Ct

LSTM

Whot +o for’jd‘?

Xt
|
Ht-1 J
Ct1 —

tanh

@ Neurod net. (ayers
@ Element-wise operations

Ht

Ct

LSTM

Ht-1 >

Actually forget

Ct-1 —

tanh

@ Neurod net. (ayers
@ Elenment—wise operotions

Ht

Ct

I.STM What's +he new volue’

Whot +o Mﬁd&fé?

4)
Ht-1 > » Ht
tanh
Ct-1 — | > (t
\ J

@ Neurod net. (ayers @
@ Element-wise operations

LSTM

Xt

Ht-1 >

Actuod by apdote

Ct-1 —

tanh

@ Neurod net. (ayers
@ Element-wise operations

Ht

Ct

LSTM

-~
Ht-1 J

Ct-1 —

tanh

@ Neurod net. (ayers
@ Elenment—wise operotions

Ct

| STM Bosult Gote!

| /

4 * / I
Ht-1 > » Ht

° ° Colewlate Besult

/
tanh | —

Ct-1 — ° + I > (t

@ Neurod net. (ayers @
@ Element-wise operations

LSTM

Ht-1

Ct-1

@ Neurod net. (ayers

Remember t+he result for rext time step

Xt
I
/J \» "
(o) (o) Cam> (o)
S)
tanh
|
L ° : /> -

@ Element-wise operations

@ Out put
-

LSTIM = Long Short Term Memory

LSTM

Xt concatenation

L/
Ht-1 /F*/
() @ (o) !
¥
Ct-1 C X +

@ /\/w'fa/(///67L. [5176[5
@ Element-wise operations

O

Ht

Ct

X = Xt v Ht—l

f = o(X.Ws + br)
u = o(X.Wu + bu)
r = o(X.W-r + br)
X' = tanh(X.Wc + bc)
Ct = f * Ct-a+u * X
He = r * tanh(Ct)

Y, = softmax(H_.W + b)

t

LSTIM = Long Short Term Memory

LSTM

Xt concatenation

L/
Ht-1 /F*/
() @ (o) !
¥
Ct-1 C X +

@ /\/m'fa/(ﬂé?L. [5176[5
@ Element-wise operations

O

Ht

Ct

X = Xt v Ht—l

f = o(X.Ws + br)
u = o(X.Wu + bu)
r = o(X.W-r + br)
X' = tanh(X.Wc + bc)
Ct = f * Ct-a+u * X
He = r * tanh(Ct)

Y, = softmax(H_.W + b)

t

Gated Recurrent Units (GRUs) o

GRU - Goted X=X | H_, pan
Recurrent Unit

(Z = G(X.Wz + bz) 77

Z 9goAfes instead ——

0/33 > chenper N = G(X.Wr‘ + br‘) Z
" X =X | r*H._ Do
\ X" = tanh(X' .Wc + bc) 2

1 t He = (1-z) * He-a + 2z * X' »

é_lt
Y. = softmax(H_.W + b) wi

Gated Recurrent Units (GRUs) o

GRU - Goted X=X | H_, pan
Recurrent Unit

(Z = G(X.Wz + bz) 77

Z 9goAfes instead ——

0/33 > chenper N = G(X.Wr‘ + br‘) Z
" X =X | r*H._ Do
\ X" = tanh(X' .Wc + bc) 2

1 t He = (1-z) * Her + 2 * X7

é_lt
Y. = softmax(H_.W + b) wi

Long Short-term Memory (LSTM): Gradient Flow

[Hochreiter et al., 1997]

t-1 \ E el O

Backpropagation from c, to
C, , only elementwise
multiplication by f, no matrix
multiply by W

) o

f — o %% (ht—l>
9) o i

g tanh

ctc=fOc_1+10g
ht = o ® tanh(c;)

Long Short-term Memory (LSTM): Gradient Flow

[Hochreiter et al., 1997]
Uninterrupted gradient flow!

i
C ®@— +— C \‘C [> O— + — C ‘C > O— + — C \—>
f f f
[[[
W_’?—Eg} © talnh W— g} ® telnh W— g—_l|:: ® telnh
—_— staTck 0 — - ®— h +—

Applications/Tasks

Image captioning
Sequence classification (Practical 4: MNIST)

Language modeling
Sequence-labeling (lots of NLP tasks, e.g. POS tagging, NER, ..
Sequence-to-sequence learning (Machine translation, Summarization, ..

one to many

t 1

t

il

many to one

H] L,
s

]

i

many to many

|

]

many to many

)

)

One-to-Many: Image captioning
GOAL: Given image, generate a sentence to describe its content.
“hat”

“straw” END

START “straw” “hat”

“straw” “hat” END

) . .‘ N
‘man in black shirt is playing ‘construction worker in orange "two young girls are playing with "boy is doing backflip on

guitar.” safety vest is working on road.” lego toy." wakeboard.

Many-to-one: Sequence Classifier (Prac 4)

GOAL: Given a sequence of inputs, predict the label for the whole sequence.
Examples:

e (iven a sentence, say if it is {negative, neutral, positive}
e Given the words in an email, predict if it is a spam message.
e (Given “pieces” of an image, predict what number is in the image.

Many-to-1: Polarity/Sentiment Classifer

We feed all the words into the model one at a time,

and make one prediction at the end:

" f9 1h,

A

are

" f@ — | h;

awesome

Many-to-1: Spam Classifer

We feed all the words into the model one at a time, Spam/Ham?
and make one prediction at the end:

h,] f9 1hy] f9 Thy [f9 — |

j } }

Viagra for cheap

Many-to-1: Image Classifier (Prac 4)

We chop up the image and feed all the pieces through
the model, and then make one prediction at the end:

0 =f9

1 Jo

1 Jo

Next-token Prediction: Language modeling

1. Computing p(next word | previous words)
m™m

2. p(T1,Toy ...y Tp) = Hp(a:”a:l o Ti1)
)

p(the) p(cat|the) p(sits|the cat) p(x_|-..)

| | |

h,] f9 1hy] f9 hy— 7 —h

| |

the cat

Next-token Prediction: Language modeling

Many-to-many: Sequence labeling

e Mapping eachinputx,x , ..., x toitsownlabely,y,..,y.
e (Notice: Same length m; each input has an output.)
e Alot of NLP Tasks fall in this category, e.g.:

o Part-of-speech tagging: map words to their parts-of-speech (noun, verb, etc).
o Named-entity Recognition: identify mentions of people, places, etc in text
o Semantic Role Labeling: find the main actions, and who performs them on whom/what

Many-to-many: Sequence labeling

e Part-of-speech tagging

vessel

Many-to-many: Sequence labeling

e Part-of-speech tagging

o
@%’é\
L @b@Ve®
/& e e e

Janet will back the bill

Many-to-many: Sequence labeling

Heat water in a large vessel.

VERB NOUN

| |

hy " f9 1h, " f@ 1h,

heat water

Many-to-many: Sequence-to-Sequence Modeling

Mapping input sequences {x , X , ..., X_} to output sequences{y .y, ...,y }.
Note: Arbitrary m and n.

Many applications, most notably Machine Translation.

Also: POS tagging, Parsing, Summarization, Dialog

MACHINE

Many-to-many: Sequence-to-Sequence Modeling ransiarion

Encoder RNN
Decoder RNN]
la maison bleu <eos>
> —_— > —_— > —_—

I e e

the blue house <s> la maison bleu

DIALOGUE

Many-to-many: Sequence-to-Sequence Modeling wvobeine

Prompt: You can’t eat pasta every day. You can’t live only on Italian food.

System: I don’t eat Italian food, but I do eat a lot of Italian food.

Many-to-many: Sequence-to-Sequence Modeling

Prompt: What do you have planned tonight?

Baseline: I have no idea what I want to do with my life. I have no idea what I want
to (Bad, Mediocre, Bad)

Ours: I was planning on doing a few of these, but I'm not sure what to choose. I
need to find a place to camp, and I don’t have a lot of time to make a plan.
(Excellent, Good, Mediocre)

Many-to-many: Sequence-to-Sequence Modeling

Prompt: Have you seen Suicide Squad?’

Baseline: I have not, but I will check it out. (Good, Good, Good)

Ours: [saw it in a theater once and it was great. It was very... I don’t know, a little
dark. I like the psychological effects and the way it portrays the characters in the
movie. (Excellent, Excellent, Excellent)

Key take-aways

e RNNs have memory/state that evolve over time.
e We unroll the graph over time to do forward propagation.
e Backprop-through-time (BPTT):
o Perform Chain Rule over the unrolled graph efficiently by saving and reusing previous

computations.
o dE/dW is sum over all time-steps (b/c of tied weights)

e Vanishing/exploding gradients
e Gated architectures

o State is selectively overwritten per time-step
o Uninterrupted gradient flow through time: no vanishing/exploding gradients!

e Lots of cool applications!

Slide Credits

Thank-you to the following resources, from which some of these slides were
drawn and adapted.

e Stanford CS231n
e TensorFlow without a PhD

http://cs231n.stanford.edu/
https://cloud.google.com/blog/big-data/2017/01/learn-tensorflow-and-deep-learning-without-a-phd

