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Part I: Foundations

Generative Models



Learning Objectives
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2. Understand the 

Model-Inference-Algorithm paradigm

1. Language to think about the 
Philosophy of Machine Learning



Probability
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Some Definitions for probability

Probability is sufficient for the task of 
reasoning under uncertainty

Statistical Probability

Frequency ratio of items

Subjective Probability

Probability as a 

degree of belief

Logical Probability

Degree of confirmation of 

a hypothesis based on 
logical analysis

Probability as 
Propensity


Probability used 

for predictions



Probability
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Probability as a Degree of Belief

Probability is a measure of the belief in a 
proposition given evidence. 


A description of a state of knowledge.

No such thing as 

the probability 


of an event, since the 
value depends on the 

evidence used.

Inherently 
subjective in that 
it depends on the 

believer’s 
information

Different observers 
with different 

information will 
have different 

beliefs.



Probabilistic Quantities
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Probability

Conditions

Bayes Rule

Parameterisation

Expectation

Gradient



Statistical Operations
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 Modelling

Estimation 
and Learning

Hypothesis 
Testing

Experimental 
Design

Data 
Enumeration

Summarisation Comparison

Inference



Centrality of Inference
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The core questions of 
AGI will be those of 

probabilistic inference

Artificial General Intelligence 
will be the refined instantiation 
of these statistical operations.

Data 
Enumeration

Summarisation Comparison

Inference



Foundations
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How will you approach your ML research and practice?

Sociological

Psychological

Componential

Physiological

Sun’s Phenomenological 
Levels

In general:

Human-centred, 


interdisciplinary approach

Model-Inference-Algorithm

For the ML Core:

Probabilistic and pragmatic in approach

Architecture-Loss



Architecture-Loss
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1. Computational Graphs

W¹: Weight X :Input

T¹:Times B¹:Weight

P¹: Plus

W²: Weight S¹: Sigmoid

T² :Times B²: Weight

P²: Plus

O: So#max

2. Error propagation



Model-Inference-Algorithm
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1. Models 2. Learning 

Principles

3. Algorithms



Models
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Models

Fully-observed

Latent Variable

y1

z1

…y2

z2

yD

zD
…

μ, Σ

n = 1, …, N

Parametric, Non-parametric

And semi-parametric

Directed and Undirected



Learning Principles
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Learning 

Principles

Statistical Inference

Laplace 
approximation

Maximum 
Likelihood

Maximum a 
posteriori

Cavity Methods
Integr. Nested 

Laplace Approx

Expectation 
Maximisation

Markov chain 
Monte Carlo

Variational 
Inference

Sequential 
Monte Carlo

Noise 
Contrastive

Two Sample 
Comparison

Transpo!ation 
methods

Approx Bayesian 
Computation

Method of 
Moments

Max Mean 
Discrepency

Direct Indirect



Algorithms
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A given model and learning principle can be implemented in many ways.

● Optimisation methods 
(SGD,  Adagrad)


● Regularisation (L1, L2, 
batchnorm, dropout)

Convolutional neural network 

+ penalised maximum likelihood

Latent variable model 

+ variational inference

● VEM algorithm

● Expectation propagation

● Approximate message passing

● Variational auto-encoders (VAE)

Restricted Boltzmann Machine 

+ maximum likelihood
● Contrastive Divergence

● Persistent CD

● Parallel Tempering

● Natural gradients

Implicit Generative Model 

+ Two-sample testing

● Unsupervised-as-supervised learning

● Approximate Bayesian Computation (ABC)

● Generative adversarial network (GAN)



Part II: Tricks

Generative Models



Learning Objectives
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1. Develop tools to manipulate 
distributions by studying 4 

probability questions.

2. Build connections between 
concepts in machine learning and 

those in other computational sciences.



Inferential Questions
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Probabilistic dexterity is needed to solve the fundamental 
problems of machine learning and artificial intelligence.

Evidence 

Estimation

p(x) =

Z
p(x, z)dz

Hypothesis Testing

B = log p(x|H1)� log p(x|H2)

Experimental Design

Parameter 

Estimation

Moment 

Computation

E[f(z)|x] =
Z

f(z)p(z|x)dz

PlanningPrediction



Identity Trick
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Transform an expectation w.r.t. distribution p, 

into an expectation w.r.t. distribution q.

Do this by introducing a probabilistic one



Identity Trick
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Conditions 
• q(z)>0, when p(x|z)p(z) ≠ 0. 
• q(z) is known/easy to handle.

532 11. SAMPLING METHODS

Figure 11.8 Importance sampling addresses the prob-
lem of evaluating the expectation of a func-
tion f(z) with respect to a distribution p(z)
from which it is difficult to draw samples di-
rectly. Instead, samples {z(l)} are drawn
from a simpler distribution q(z), and the
corresponding terms in the summation are
weighted by the ratios p(z(l))/q(z(l)).

p(z) f(z)

z

q(z)

Furthermore, the exponential decrease of acceptance rate with dimensionality is a
generic feature of rejection sampling. Although rejection can be a useful technique
in one or two dimensions it is unsuited to problems of high dimensionality. It can,
however, play a role as a subroutine in more sophisticated algorithms for sampling
in high dimensional spaces.

11.1.4 Importance sampling
One of the principal reasons for wishing to sample from complicated probability

distributions is to be able to evaluate expectations of the form (11.1). The technique
of importance sampling provides a framework for approximating expectations di-
rectly but does not itself provide a mechanism for drawing samples from distribution
p(z).

The finite sum approximation to the expectation, given by (11.2), depends on
being able to draw samples from the distribution p(z). Suppose, however, that it is
impractical to sample directly from p(z) but that we can evaluate p(z) easily for any
given value of z. One simplistic strategy for evaluating expectations would be to
discretize z-space into a uniform grid and to evaluate the integrand as a sum of the
form

E[f ] ≃
L∑

l=1

p(z(l))f(z(l)). (11.18)

An obvious problem with this approach is that the number of terms in the summation
grows exponentially with the dimensionality of z. Furthermore, as we have already
noted, the kinds of probability distributions of interest will often have much of their
mass confined to relatively small regions of z space and so uniform sampling will be
very inefficient because in high-dimensional problems, only a very small proportion
of the samples will make a significant contribution to the sum. We would really like
to choose the sample points to fall in regions where p(z) is large, or ideally where
the product p(z)f(z) is large.

As in the case of rejection sampling, importance sampling is based on the use
of a proposal distribution q(z) from which it is easy to draw samples, as illustrated
in Figure 11.8. We can then express the expectation in the form of a finite sum over

Integral problem p(x) =

Z
p(x|z)p(z)dz

Probabilistic one p(x) =

Z
p(x|z)p(z)q(z)

q(z)
dz

Re-group/re-weight p(x) =

Z
p(x|z)p(z)

q(z)
q(z)dz



Importance Sampling
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w(s) =
p(z)

q(z)
z(s) ⇠ q(z)

532 11. SAMPLING METHODS

Figure 11.8 Importance sampling addresses the prob-
lem of evaluating the expectation of a func-
tion f(z) with respect to a distribution p(z)
from which it is difficult to draw samples di-
rectly. Instead, samples {z(l)} are drawn
from a simpler distribution q(z), and the
corresponding terms in the summation are
weighted by the ratios p(z(l))/q(z(l)).

p(z) f(z)

z

q(z)

Furthermore, the exponential decrease of acceptance rate with dimensionality is a
generic feature of rejection sampling. Although rejection can be a useful technique
in one or two dimensions it is unsuited to problems of high dimensionality. It can,
however, play a role as a subroutine in more sophisticated algorithms for sampling
in high dimensional spaces.

11.1.4 Importance sampling
One of the principal reasons for wishing to sample from complicated probability

distributions is to be able to evaluate expectations of the form (11.1). The technique
of importance sampling provides a framework for approximating expectations di-
rectly but does not itself provide a mechanism for drawing samples from distribution
p(z).

The finite sum approximation to the expectation, given by (11.2), depends on
being able to draw samples from the distribution p(z). Suppose, however, that it is
impractical to sample directly from p(z) but that we can evaluate p(z) easily for any
given value of z. One simplistic strategy for evaluating expectations would be to
discretize z-space into a uniform grid and to evaluate the integrand as a sum of the
form

E[f ] ≃
L∑

l=1

p(z(l))f(z(l)). (11.18)

An obvious problem with this approach is that the number of terms in the summation
grows exponentially with the dimensionality of z. Furthermore, as we have already
noted, the kinds of probability distributions of interest will often have much of their
mass confined to relatively small regions of z space and so uniform sampling will be
very inefficient because in high-dimensional problems, only a very small proportion
of the samples will make a significant contribution to the sum. We would really like
to choose the sample points to fall in regions where p(z) is large, or ideally where
the product p(z)f(z) is large.

As in the case of rejection sampling, importance sampling is based on the use
of a proposal distribution q(z) from which it is easy to draw samples, as illustrated
in Figure 11.8. We can then express the expectation in the form of a finite sum over

Monte Carlo 

Estimator

p(x) =
1

S

X

s

w(s)p(x|z(s))

Identity Trick Elsewhere

• Manipulate stochastic gradients

• Derive probability bounds

• RL for policy corrections



Bounding Tricks

Shakir Mohamed

An important result from convex analysis lets us move 
expectations through a function:

For concave functions f(.)
f(E[x]) � E[f(x)]

Logarithms are strictly concave allowing us to use Jensen’s inequality.


log

Z
p(x)g(x)dx �

Z
p(x) log g(x)dx

f(x)

Bounding Trick Elsewhere

Optimisation; Variational Inference; Rao-
Blackwell Theorem; 

Other Bounding Tricks

• Fenchel duality

• Holder’s inequality

• Monge-Kantorovich Inequality



Evidence Bounds
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Integral problem p(x) =

Z
p(x|z)p(z)dz

Proposal p(x) =

Z
p(x|z)p(z)q(z)

q(z)
dz

Importance Weight p(x) =

Z
p(x|z)p(z)

q(z)
q(z)dz

Jensen’s inequality

log

Z
p(x)g(x)dx �

Z
p(x) log g(x)dx

log p(x) �
Z

q(z) log

✓
p(x|z)p(z)

q(z)

◆
dz

Lower bound Eq(z)[log p(x|z)]�KL[q(z)kp(z)]

=

Z
q(z) log p(x|z)�

Z
q(z) log

q(z)

p(z)



Density Ratio Trick
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The ratio of two densities can be computed using a classifier of 
using samples drawn from the two distributions.

p⇤(x)

q(x)
=

p(y = 1|x)
p(y = �1|x)

Density Ratio Trick Elsewhere

• Generative Adversarial Networks (GANs)

• Noise contrastive estimation, Classifier-ABC

• Two-sample testing

• Covariate-shift, calibration



Density Ratio Estimation
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{y1, . . . , yN} = {+1, . . . ,+1,�1, . . . ,�1}Assign labels

=
p(y = +1|x)p(x)

p(y = +1)

�
p(y = �1|x)p(x)

p(y = �1)Bayes’ Subst.

Computing a density ratio is equivalent to class probability estimation.

Numerical Example 14

True
densities

Kernel logistic regression
with Gaussian kernels

Ratios
p(y = �1|x)

p(y = +1|x)

Equivalence  p⇤(x) = p(x|y = 1) q(x) = p(x|y = �1)

Density Ratio p(x|y) = p(y|x)p(x)
p(y)

Bayes’ Rule
p⇤(x)

q(x)

Conditional
p⇤(x)

q(x)
=

p(x|y = 1)

p(x|y = �1)

Class probability
p⇤(x)

q(x)
=

p(y = 1|x)
p(y = �1|x)



Stochastic Optimisation
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Common gradient problem

r�Eq�(z)[f✓(z)] = r
Z

q�(z)f✓(z)dz

1. Pathwise estimator: Differentiate the function f(z)

2. Score-function estimator: Differentiate the density q(z|x)

• Don’t know this expectation 
in general.


• Gradient is of the parameters 
of the distribution w.r.t. which 
the expectation is taken.

Typical problem areas

• Sensitivity analysis 

• Generative models and inference

• Reinforcement learning and control

• Operations research and inventory control

• Monte Carlo simulation

• Finance and asset pricing



Log-derivative Trick
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r� log q�(z) =
r�q�(z)

q�(z)

Score function is the derivative of a log-likelihood function.

Several useful properties

Eq(z) [r� log q�(z)] = 0Expected score

Fisher Information

↞Show this



Score-function Estimator
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Other names

• Likelihood ratio method

• REINFORCE and policy gradients

• Automated & Black-box inference

When to use

• Function is not differentiable, not analytical.

• Distribution q is easy to sample from.

• Density q is known and differentiable.

=

Z
q�(z)

q�(z)
r�q�(z)f(z)dz Identity

=

Z
q�(z)r� log q�(z)f(z)dz Log-deriv

r�Eq�(z)[f✓(z)] = r
Z

q�(z)f✓(z)dz Leibnitz integral rule

= Eq�(z) [f(z)r� log q�(z)] Gradient

= Eq�(z) [(f(z)� c)r� log q�(z)]r�Eq�(z)[f✓(z)] = r
Z

q�(z)f✓(z)dz
Control

Variate



Many More Tricks
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Strengthen your probabilistic dexterity.

Identity

Flows

Log-derivative r� log q�(z) =
r�q�(z)

q�(z)

Reparameterisation z = g(✏,�) ✏ ⇠ p(✏)

Density Ratio
p⇤(x)

q(x)
=

p(y = 1|x)
p(y = �1|x)

Hutchinson’s



Part III: Algorithms

Generative Models



Learning Objectives
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2. Build awareness of the breadth of 
applications of generative models.

1. Have knowledge of different 
types of probabilistic models 

for unsupervised learning.



Beyond Classification
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Move beyond 
associating inputs 

to outputs

Understand and simulate 
how the world evolves

Recognise objects in the 
world and their factors 

of variation

Detect surprising 
events in the world

Establish concepts as 
useful for reasoning and 


decision making

Anticipate and 
generate rich plans 

for the future



Generative Models
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Characteristics are:

- Probabilistic models of data that 

allow for uncertainty to be captured.

- High-dimensional data.

- Data distribution is targeted.

Models that allow for 
(conditional) density 

estimation

Approaches for 
unsupervised learning of 

data

A model that allows us to 
learn a simulator of data



Applications
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Products
Super-resolution, 
Compression, 
Text-to-speech

Science

Proteomics,
Drug Discovery,

Astronomy,
High-energy physics

AI Planning, 
Exploration

Intrinsic motivation
Model-based RL



Assistive Technologies
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Fully-observed conditional generative model



Compression-Communication
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Compression rate:  
0.2bits/dimension

Original

JPEG-2000

JPEG

VAE1

VAE2



Generative Design

Shakir Mohamed



Shakir Mohamed
Video from work of Memo Aktem



Advancing Science
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Advancing Healthcare
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Types of Generative Models

Shakir Mohamed

Fully-observed models

z

x

f(z)

Latent 
variable

models

Sum-Product Networks

Undirected Models



Types of Generative Models
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Design Dimensions

Computational complexity

Modelling capacity

Bias, uncertainty, calibration

Interpretability

Data: binary, real-valued, nominal, strings, 
images.

Dependency: independent, sequential, 
temporal, spatial.

Representation: continuous or discrete

Dimension: parametric or non-parametric



Fully-observed Models
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Fully-observed models

xk

xi

xj

f(x) Model observed data directly 

without introducing any new 
unobserved local variables. 

Model Parameters are 
global variables.

Stochastic activations 
& unobserved 

random variables are 
local variables. 

p(x) =
Y

i

p(xi|f(x<i;✓))

xt xt+1 xt+2 xt+3 …

M
ar

ko
v 

M
od

el
s

x1 ⇠ Cat(x1|⇡)

x2 ⇠ Cat(x2|⇡(x1))
. . .

xi ⇠ Cat(xi|⇡(x<n))

All conditional probabilities 
described by deep networks.

White Whale

Hartebeest Pixel CNN
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+ Can directly encode how observed points are related.

+ Any data type can be used

+ For directed graphical models: 


+ Parameter learning simple: Log-likelihood is directly computable, 
no approximation needed. 


+ Easy to scale-up to large models, many optimisation tools available.

- Order sensitive.


- For undirected models, 

- Parameter learning difficult: Need to compute normalising 

constants.

- Generation can be slow: iterate through elements sequentially, or 

using a Markov chain.

Properties
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xt xt+1 xt+2 xt+3 …

Directed

Undirected

ContinuousDiscrete

Normal Means
Continuous 

Markov Models
N-AR(p)
RNADE

NADE, EoNADE
Fully-visible sigmoid
belief networks
Pixel CNN/RNN
RNN Language mod.
Context tree switching

Boltzmann Machines
Discrete Markov 
Random Fields
Ising, Hopfield 
and Potts Models

Gaussian MRFs
Log-linear models



Latent Variable Models
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Prescribed models


Use observer likelihoods and 
assume observation noise.

z

f(z)

x

z

x

f(z)

Implicit models


Likelihood-free or 
simulation-based models.

Latent variable modelsz

x

f(z) Introduce an unobserved 

local random variables that 


represents hidden causes.



Prescribed Models
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D
ee

p
 L

at
en

t 
G

au
ss

ia
n 

M
od

el z3

z2

z3

x

z3 ⇠ N (0, I)

z2|z3 ⇠ N (µ(z3),⌃(z3))

z1|z2 ⇠ N (µ(z2),⌃(z2))

x|z1 ⇠ N (µ(z1),⌃(z1))

Convolutional  
DRAW

Conceptual Compression

Figure 10. Generated samples from a network trained on 64 ⇥ 64 ImageNet with input scaling � = 0.4. Qualitatively asking the
model to be less precise seems to lead to visually more appealing samples.
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+ Easy sampling. 

+ Easy way to include hierarchy and depth.

+ Easy to encode structure believed to generate the data

+ Avoids order dependency assumptions: marginalisation of latent 

variables induces dependencies.

+ Latents provide compression and representation the data.

+ Scoring, model comparison and selection possible using the 

marginalised likelihood.

- Inversion process to determine latents corresponding to a input 

is difficult in general

- Difficult to compute marginalised likelihood requiring 

approximations.

- Not easy to specify rich approximations for latent posterior 

distribution.

Properties



Shakir Mohamed

Non-parametric

Parametric

Continuous

Discrete
Deep

Direct/
Linear

Deep Gaussian 
processes
Recurrent Gaussian
Process
GP State space model

Indian buffet process
Dirichlet process
mixture

Hidden Markov Model
Discrete LVM
Sparse LVMs

PCA, factor analysis
Independent 
components analysis
Gaussian LDS
Latent Gauss Field

Nonlinear factor 
analysis
Nonlinear Gaussian 
belief network
Deep Latent Gaussian 
(VAE, DRAW)

Cascaded Indian
Buffet process
Hierarchical Dirichlet
process

Linear Parametric Discrete

Linear Parametric Continuous

Sigmoid Belief Net
Deep auto-regressive
networks (DARN)

Direct Nonparametric Discrete

Direct Nonparametric Continuous

Deep Parametric Discrete

Deep Parametric Continuous

Deep Nonparametric Discrete

Deep Nonparametic Continuous

Gaussian process LVM



Implicit Models
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Under review as a conference paper at ICLR 2016

Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called
deconvolutions) then convert this high level representation into a 64 ⇥ 64 pixel image. Notably, no
fully connected or pooling layers are used.

suggested value of 0.9 resulted in training oscillation and instability while reducing it to 0.5 helped
stabilize training.

4.1 LSUN

As visual quality of samples from generative image models has improved, concerns of over-fitting
and memorization of training samples have risen. To demonstrate how our model scales with more
data and higher resolution generation, we train a model on the LSUN bedrooms dataset containing
a little over 3 million training examples. Recent analysis has shown that there is a direct link be-
tween how fast models learn and their generalization performance (Hardt et al., 2015). We show
samples from one epoch of training (Fig.2), mimicking online learning, in addition to samples after
convergence (Fig.3), as an opportunity to demonstrate that our model is not producing high quality
samples via simply overfitting/memorizing training examples. No data augmentation was applied to
the images.

4.1.1 DEDUPLICATION

To further decrease the likelihood of the generator memorizing input examples (Fig.2) we perform a
simple image de-duplication process. We fit a 3072-128-3072 de-noising dropout regularized RELU
autoencoder on 32x32 downsampled center-crops of training examples. The resulting code layer
activations are then binarized via thresholding the ReLU activation which has been shown to be an
effective information preserving technique (Srivastava et al., 2014) and provides a convenient form
of semantic-hashing, allowing for linear time de-duplication . Visual inspection of hash collisions
showed high precision with an estimated false positive rate of less than 1 in 100. Additionally, the
technique detected and removed approximately 275,000 near duplicates, suggesting a high recall.

4.2 FACES

We scraped images containing human faces from random web image queries of peoples names. The
people names were acquired from dbpedia, with a criterion that they were born in the modern era.
This dataset has 3M images from 10K people. We run an OpenCV face detector on these images,
keeping the detections that are sufficiently high resolution, which gives us approximately 350,000
face boxes. We use these face boxes for training. No data augmentation was applied to the images.

4

z

f(z)

x

Implicit models

Transform an unobserved 

noise source using a 


parameterised function.

G
en

er
at

or
 


N
et

w
or

ks

μ

R

r✓

x = µ+Rz

z ⇠ p(z)
p(x) = p(z)

����det
@f

@z

����
�1

Change of variables for invertible functions

x = f(z;✓)

z ⇠ N (0, I)

The transformation function is parameterised by a linear or 
deep network (fully-connected, convolutional or recurrent).
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+ Easy sampling, and natural to specify.

+ Easy to compute expectations without knowing final distribution.

+ Can exploit with large-scale classifiers and convolutional networks.

- Difficult to satisfy constraints: Difficult to maintain invertibility, 

and challenging optimisation. 

- Lack of noise model (likelihood):


- Difficult to extend to generic data types

- Difficult to account for noise in observed data.

- Hard to compute marginalised likelihood for model scoring, 

comparison and selection.

Convolutional generative  
adversarial network

Under review as a conference paper at ICLR 2016

Figure 2: Generated bedrooms after one training pass through the dataset. Theoretically, the model
could learn to memorize training examples, but this is experimentally unlikely as we train with a
small learning rate and minibatch SGD. We are aware of no prior empirical evidence demonstrating
memorization with SGD and a small learning rate.

Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual
under-fitting via repeated noise textures across multiple samples such as the base boards of some of
the beds.

4.3 IMAGENET-1K

We use Imagenet-1k (Deng et al., 2009) as a source of natural images for unsupervised training. We
train on 32⇥ 32 min-resized center crops. No data augmentation was applied to the images.

5

Bedrooms

Properties
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z

f(z)

x

Functions
Discrete time

Diffusions
Continuous time

One-liners and 
inverse sampling
Distrib. warping

Normalising flows
GAN generator nets 

Non- and volume 
preserving transforms

Stochastic 
Differential Equations
Hamiltonian and 
Langevin SDE
Diffusion Models
Non- and volume
preserving flows



Model-Inference-Algorithm
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Data x

Inference 
Network

q(z |x)

z ~ q(z | x)

Model
p(x |z)

x ~ p(x | z)

z

Variational Autoencoders 
(VAEs)

Prescribed latent 
variable models + 

variational inference

Generative Adversarial 
Networks (GANs)

Generator

z

xreal xgen

D�

Implicit latent variable 
models + estimation-

by-comparison



Learning by Comparison
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z

f(z)

x

Interest is not in estimating the marginal probabilities, only in how they are related.

We compare the 

estimated 

distribution q(x) to 
the true distribution 
p*(x) using samples.

p*(x)
q(x)

Learning principle: Two-sample tests

Numerical Example 14

True
densities

Kernel logistic regression
with Gaussian kernels

Ratiosp(x(1))

p(x(2))

p⇤(x)

q(x)
= 1 p⇤(x) = q(x)

Implicit latent variable models + estimation-by-comparison

Basic idea: 
Transform into 

learning a model of 
the density ratio.



Estimation by Comparison
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Two steps

1. Use a hypothesis 
test or comparison 
to obtain some model 
to tells how data from 
our model differs 
from observed data. 

Density Estimation 
by Comparison

Density Difference
r� = p⇤ � q✓

Density Ratio
r� = p⇤

q✓

f-Divergence
Class Probability

Estimation
Bregman 

Divergence
Moment 

Matching

Bf [r
⇤kr]

f(u) = u log u� (u+ 1) log(u+ 1)

Mixtures with 
identical moments

L(✓,�)

Max Mean 
Discrepency

H0 : p⇤ = q✓ vs. p⇤ 6= q✓

2. Adjust model 
to better match 
the data 
distribution using 
the comparison 
model from step 1.



Adversarial Learning
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Scoring Functionp(y = �1|x) = 1�D✓(x)p(y = +1|x) = D✓(x)

xgen xobs

z

f(z)

x

xgen = f�(z)
z ⇠ p(z)Instances of testing and inference: 

• Unsupervised-as-supervised learning 
• Classifier ABC 
• Noise-contrastive estimation 
• Adversarial learning and GANs

Bernoulli LossF(x, ✓,�) = Ep⇤(x)[logD✓(x)] + Eq�(x)[log(1�D✓(x)]

Generative Adversarial Networks

Density-ratio Reparameterisation

p⇤(x)

q(x)
=

p(y = 1|x)
p(y = �1|x)

✓ / r✓Ep⇤(x)[logD✓(x)] +r✓Eq�(x)[log(1�D✓(x)]

� / �r�Eq(z)[log(1�D✓(f�(z))]

Comparison loss
Generative loss

min
�

max
✓

F(x, ✓,�)Alternating optimisation



Model Evidence
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Improve the model evidence for given data samples.

Integral is intractable in general and 
requires approximation.

Model evidence (or marginal likelihood, partition function): 

Integrating out any global and local variables enables


model scoring, comparison, selection, moment estimation, 
normalisation, posterior computation and prediction.

z

x

f(z)

Learning principle: Model Evidence 

532 11. SAMPLING METHODS

Figure 11.8 Importance sampling addresses the prob-
lem of evaluating the expectation of a func-
tion f(z) with respect to a distribution p(z)
from which it is difficult to draw samples di-
rectly. Instead, samples {z(l)} are drawn
from a simpler distribution q(z), and the
corresponding terms in the summation are
weighted by the ratios p(z(l))/q(z(l)).

p(z) f(z)

z

q(z)

Furthermore, the exponential decrease of acceptance rate with dimensionality is a
generic feature of rejection sampling. Although rejection can be a useful technique
in one or two dimensions it is unsuited to problems of high dimensionality. It can,
however, play a role as a subroutine in more sophisticated algorithms for sampling
in high dimensional spaces.

11.1.4 Importance sampling
One of the principal reasons for wishing to sample from complicated probability

distributions is to be able to evaluate expectations of the form (11.1). The technique
of importance sampling provides a framework for approximating expectations di-
rectly but does not itself provide a mechanism for drawing samples from distribution
p(z).

The finite sum approximation to the expectation, given by (11.2), depends on
being able to draw samples from the distribution p(z). Suppose, however, that it is
impractical to sample directly from p(z) but that we can evaluate p(z) easily for any
given value of z. One simplistic strategy for evaluating expectations would be to
discretize z-space into a uniform grid and to evaluate the integrand as a sum of the
form

E[f ] ≃
L∑

l=1

p(z(l))f(z(l)). (11.18)

An obvious problem with this approach is that the number of terms in the summation
grows exponentially with the dimensionality of z. Furthermore, as we have already
noted, the kinds of probability distributions of interest will often have much of their
mass confined to relatively small regions of z space and so uniform sampling will be
very inefficient because in high-dimensional problems, only a very small proportion
of the samples will make a significant contribution to the sum. We would really like
to choose the sample points to fall in regions where p(z) is large, or ideally where
the product p(z)f(z) is large.

As in the case of rejection sampling, importance sampling is based on the use
of a proposal distribution q(z) from which it is easy to draw samples, as illustrated
in Figure 11.8. We can then express the expectation in the form of a finite sum over

p(x) =

Z
p(x, z)dz

Basic idea: 
Transform the integral into an 

expectation over a simple, 
known distribution.

Prescribed latent variable models + variational inference



Variational Inference

Shakir Mohamed

This bound is exactly of the form we are looking for.


• Variational free energy: We obtain a functional and are free to choose 
the distribution q(z) that best matches the true posterior.

• Evidence lower bound (ELBO): principled bound on the 
marginal likelihood, or model evidence. 


• Certain choices of q(z) makes this quantity easier to 
compute. Examples to come.	

F(x, q) = Eq(z)[log p(x|z)]�KL[q(z)kp(z)]

Identity Bounding

p(x) =

Z
p(x, z)dz



Variational Bound
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Interpreting the bound:

PenaltyReconstructionApprox. Posterior

• Approximate posterior distribution q(z):  Best match to true 
posterior p(z|y),  one of the unknown inferential quantities of interest to 
us.

• Reconstruction cost: The expected log-likelihood measure how well 
samples from q(z) are able to explain the data y.

• Penalty:  Ensures the the explanation of the data q(z) doesn’t deviate 
too far from your beliefs p(z). A mechanism for realising Okham’s razor.

F(x, q) = Eq(z)[log p(x|z)]�KL[q(z)kp(z)]



Variational Bound
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Some comments on q:


• Integration is now optimisation: optimise for q(z) directly. 


• I write q(z) to simplify the notation, but it depends on the data,  q(z|x).


• Easy convergence assessment since we wait until the free energy (loss) 
reaches convergence.


• Variational parameters: parameters of q(z)


• E.g., if a Gaussian, variational parameters are mean and variance.


• Optimisation allows us to tighten the bound and get as close as 
possible to the true marginal likelihood.

PenaltyReconstructionApprox. Posterior

F(x, q) = Eq(z)[log p(x|z)]�KL[q(z)kp(z)]



Real Posteriors
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Require flexible approximations for the types of posteriors we are likely to see.



Mean-Fields
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Mean-field methods assume that the distribution is factorised.


Restricted class of approximations: every dimension (or subset 
of dimensions) of the posterior is independent.

z2

z3z1

z2

z3z1

q⇤(z|x) / p(x|z)p(z) qMF (z|x) =
Y

k

q(zk)

True Posterior Fully-factorised

Most Expressive Least Expressive



Structured Mean-field
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Structured mean-field: introduce dependencies into our factorisation.

z2

z3z1

z2

z3z1

True Posterior Fully-factorisedStructured Approx.

z2

z3z1

q⇤(z|x) / p(x|z)p(z) qMF (z|x) =
Y

k

q(zk)

Most Expressive Least Expressive

q(z) =
Y

k

qk(zk|{zj}j 6=k)



Families of Approximations
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z2

z3z1

z2

z3z1

True Posterior Fully-factorisedFamilies of Posterior Approximations

q⇤(z|x) / p(x|z)p(z) qMF (z|x) =
Y

k

q(zk)

Most Expressive Least Expressive

z

x ⍵
p(x|z)

p(z)

r(!|x, z)

+

y

z3z1 z2

MixturesAuxiliary variables

z0

x

z1

…

zK

Normalising 
flows

z2 z3z1 z4 …

Structured mean-field Covariance models



Variational Optimisation
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• Variational EM

• Stochastic Variational Inference

• Doubly Stochastic Variational 

Inference

• Amortised Inference

472 10. APPROXIMATE INFERENCE
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Figure 10.4 Illustration of variational inference for the mean µ and precision τ of a univariate Gaussian distribu-
tion. Contours of the true posterior distribution p(µ, τ |D) are shown in green. (a) Contours of the initial factorized
approximation qµ(µ)qτ (τ) are shown in blue. (b) After re-estimating the factor qµ(µ). (c) After re-estimating the
factor qτ (τ). (d) Contours of the optimal factorized approximation, to which the iterative scheme converges, are
shown in red.

In general, we will need to use an iterative approach such as this in order to
solve for the optimal factorized posterior distribution. For the very simple example
we are considering here, however, we can find an explicit solution by solving the
simultaneous equations for the optimal factors qµ(µ) and qτ (τ). Before doing this,
we can simplify these expressions by considering broad, noninformative priors in
which µ0 = a0 = b0 = λ0 = 0. Although these parameter settings correspond to
improper priors, we see that the posterior distribution is still well defined. Using the
standard result E[τ ] = aN/bN for the mean of a gamma distribution, together withAppendix B
(10.29) and (10.30), we have

1
E[τ ]

= E

[
1
N

N∑

n=1

(xn − µ)2
]

= x2 − 2xE[µ] + E[µ2]. (10.31)

Then, using (10.26) and (10.27), we obtain the first and second order moments of

PenaltyReconstructionApprox. Posterior

F(x, q) = Eq(z)[log p(x|z)]�KL[q(z)kp(z)]



Variational EM
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Alternating optimisation for 
the variational parameters and 
then model parameters (VEM).

Repeat:

F(x, q) = Eq(z)[log p(x|z)]�KL[q(z)kp(z)]

E-step Var. params� / r�F(x, q)

M-step Model params✓ / r✓F(x, q)

Initialisation

…

log p(x)

KL[q||p⇤]

F(x, q)

Convergence

…

t = 1

E M



Amortised Inference
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Instead of solving for every 
observation, amortise using a model.

• Inference network: q is an encoder, an inverse model, 
recognition model.


• Parameters of q are now a set of global parameters used 
for inference of all data points - test and train.


• Amortise (spread) the cost of inference over all data.

• Joint optimisation of variational and model parameters.

Inference networks provide an efficient mechanism for 

posterior inference with memory

Repeat:

M-step

For i = 1, … N
E-step (compute q)

�n / r�Eq�(z)[log p✓(xn|zn)]�r�KL[q(zn)kp(z)]

✓ / 1

N

X

n

Eq�(z)[r✓ log p✓(xn|zn)]

Data x

Inference 
Network

q(z |x)

z ~ q(z | x)



Stochastic Gradients
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= Eq(z)[f✓(z)r� log q�(z))]

Doubly stochastic estimators

r�Eq�(z)[f✓(z)] = r
Z

q�(z)f✓(z)dz

= Ep(✏)[r�f✓(g(✏,�))]
z ⇠ q�(z)
z = g(✏,�) ✏ ⇠ p(✏)

μ

R

r✓

x = µ+Rz

z ⇠ p(z)

Pathwise Estimator 
When easy to use transformation is 

available and differentiable function f.
Score-function estimator
When function f non-differentiable and 

q(z) is easy to sample from.

Identity Log-derivativeReparameterisation



Variational Autoencoder
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• Model (Decoder): likelihood p(x|z).

• Inference (Encoder): variational distribution q(z|x)

• Transforms an auto-encoder into a generative model

Stochastic encoder-decoder system to

implement variational inference.

PenaltyReconstructionApprox. Posterior

Specific combination of variational inference in latent 
variable models using inference networks


Variational Auto-encoder


But don’t forget what your model is, and what inference you use.

F(x, q) = Eq(z)[log p(x|z)]�KL[q(z)kp(z)]

Data x

Inference 
Network

q(z |x)

z ~ q(z | x)

Model
p(x |z)

x ~ p(x | z)

z



Final Words
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Data x

Inference 
Network

q(z |x)

z ~ q(z | x)

Model
p(x |z)

x ~ p(x | z)

z

Generator

z

xreal xgen

D�

q�(z)

KL[q(z|y)kp(z|y)] Approximation class

True posterior

z

f(z)

x



Generative Models
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