
Advanced
Reinforcement Learning

George Konidaris
gdk@cs.brown.edu

mailto:gdk@cs.brown.edu

Reinforcement Learning

max
�

R =
��

t=0

�trt
π : S → A

The World

Discrete RL

Real-Valued States
What if the states or actions are real-valued?

Need real-valued:
• Policies
• Value Functions
• Environmental Models

0 10 20 30 40 50 60 70 80 90020406080100

0

0.5

1

1.5

2

2.5

vs

Key issues:
• Uncountable infinity
• May never revisit states
• Must generalize

Function Approximation
Exactly as we have seen before.

• Represent function in parametrized form:

… for some parameter vector w.

• Write an objective function in terms of w.

• Optimize (typically gradient descent).

f(x,w)

f(x)

Function Approximation

Value
function

Policy Model

Function Approximation

Value
function

Policy Model

Value Function Approximation
Represent Q function:

Objective function?

Q(s, a, w) : Rn ! R

Samples of form:

(si, ai, ri, si+1, ai+1)

min
w

nX

i=0

(Q(si, ai, w)� ri � �Q(si+1, ai+1, w))
2

Minimize summed squared TD error:

Value Function Approximation
Given a function approximator, compute the gradient and
descend it.

Simplest thing you can do:
• Linear value function approximation.
• Use set of basis functions
• Q is a linear function of them:

�1, ...,�n

Q̂(s, a) = w · �(s, a) =
nX

i=1

wi�(si, ai)

Function Approximation
One choice of basis functions:

• Just use state variables directly:

More powerful:
• Polynomials in state variables.

• 1st order:
• 2nd order:

• This is like a Taylor expansion.

[1, x, y]

[1, x, y, xy]
[1, x, y, xy, x2

, y

2
, x

2
y, y

2
x, x

2
y

2]

Function Approximation
Another:

• Fourier terms on state variables.
• [1, cos(πx), cos(πy), cos(π[x + y])]

Objective Function Minimization
First, let’s do stochastic gradient descent.

As each data point (transition) comes in
• compute gradient of objective w.r.t. data point
• descend gradient a little bit

min
w

nX

i=0

(w · �(si, ai)� ri � �w · �(si+1, ai+1))
2

Q̂(s, a) = w · �(s, a)

Gradient
For each weight wj:

TD error

@

@wj

nX

i=0

(w · �(si, ai)� ri � �w · �(si+1, ai+1))
2

= 2
nX

i=0

(w · �(si, ai)� ri � �w · �(si+1, ai+1))�j(si, ai)

(w · �(si, ai)� ri � �w · �(si+1, ai+1))�j(si, ai)

so for each si the contribution is:

make a step:
wj,i+1 = wj,i + ↵ (w · �(si, ai)� ri � �w · �(si+1, ai+1))�j(si, ai)

wi+1 = wi + ↵��(si, ai)

λ-Gradient
The same logic applies when using eligibility traces.

becomes

where

wi+1 = wi + ↵��(si, ai)

wi+1 = wi + ↵�e

et = ��et�1 + �(st, at)

e0 = 0̄

[Sutton and Barto, 1998]

Acrobot

Acrobot

Least-Squares TD
Minimize:

 
Error function has a bowl shape, so unique minimum. Just go
right there!

min
w

nX

i=0

(w · �(si, ai)� ri � �w · �(si+1, ai+1))
2

Least-Squares TD
Derivative set to zero:

nX

i=1

(w · �(si, ai)� ri � �w · �(si+1, ai+1))�(si, ai)
T = 0

wT
nX

i=1

(w · �(si, ai)� �w · �(si+1, ai+1))�
T (si, ai) =

nX

i=1

ri�
T (si, ai)

w = A�1b
A =

nX

i=1

(�(si, ai)� ��(si+1, ai+1))�
T (si, ai)

b =
nX

i=1

ri�
T (si, ai)

[Bradtke and Barto, 1996]

LSTD(λ)

Can derive the least-squares version of LSTD(λ) in this way.
Try it at home!

• Write down the objective function …
• Sample ri replaced by complex reward estimate.

• You will get a trace vector if you do some clever algebra.
• Trace vector is the same size as w.

[Boyan, 1999]

LSTD(λ)
One inversion solves for w!

But:
• Computationally expensive.
• A may not be invert-able.
• Least-squares behavior sometimes unstable outside of data.

• LSPI: Least Squares Policy Iteration
• Requires recomputing A over historical data.

• ai+1 changes with the policy

[Lagoudakis and Parr, 2003]

Linear Methods Don’t Scale
Why not?

• They’re complete.
• They have nice properties (bowl-shaped error).
• They are easy to use!

How many basis functions in a complete nth order Taylor
series of d variables?

(n+ 1)d

Function Approximation

TD-Gammon: Tesauro (circa 1992-1995)
• At or near best human level
• Learn to play Backgammon through self-play
• 1.5 million games
• Neural network function approximator
• TD(λ)

Changed the way the best human players played.

Arcade Learning Environment

[Bellemare 2013]

Deep Q-Networks

[Mnih et al., 2015]

Atari

[Mnih et al., 2015] video: Two Minute Papers

Atari

[Mnih et al., 2015]

Function Approximation

Value
function

Policy Model

Policy Search
Represent policy directly:

Why?

Objective function?

⇡(s, a, ✓) : Rn,Rm ! [0, 1]

Hill Climbing
What if you can’t differentiate ?

Sample-based optimization:
• Sample some values near your current best .
• Adjust your current best to the highest value .

⇡

✓ ✓
✓

Aibo Gait Optimization
from Kohl and Stone, ICRA 2004.

PoWER and PI2
More recently, two closely related algorithms:

• Generate some sample values.
• Next is sum of prior samples weighted by reward.

(Theodorou and Schaal 2010, Kober and Peters 2011)

✓
✓

REINFORCE
If we can differentiate …

• Compute and ascend
• This is the gradient of return w.r.t policy parameters

REINFORCE: one particularly popular sample-based estimate
of the gradient.

�✓t = ↵rt
r⇡(st, at, ✓)

⇡(st, at, ✓)

∂R/∂θ
⇡

Policy Search
Slightly more general theorem - policy gradient theorem.

Therefore, one way is to learn Q and then ascend gradient.
Q need only be defined using basis functions computed from .θ

[Sutton et al. 1999]

Deep Policy Search

[Levine et al., 2016]

Deep Policy Search

[Levine et al., 2016]

Robotics

[Levine et al., 2016]

Function Approximation

Value
function

Policy Model

Learning a Model
Learn a model:

Why?

Objective function?

Samples of form:
(si, ai, ri, si+1, ai+1)

Maximize likelihood of observed transitions:

max

w
⇧

n
i=1T (si+1|si, ai, w)

T (si+1|si, ai, w)

Procedure
Model-based RL algorithms roughly look like:

• Get some transition data
• Learn a model
• Run RL on samples from that model to convergence
• Repeat

Advantages?

This never works. Why?

PILCO
The main issue is that your model is never exactly right.

• Policy specialized to model.
• Typically assume predictions are “correct”.
• But the model is uncertain!

Recent breakthrough: Bayesian policy search:

Z

M
E
"
X

t

R(st)

#

[Deisenroth et al, 2011]

Combine Gaussian process dynamics learning with analytic
policy gradient methods.

PILCO

Deep Models

[Weber et al., 2017]

Deep Models

[Weber et al., 2017]

Deep Models

[Weber et al., 2017]

Deep Models

[Weber et al., 2017]

Function Approximation

Value
function

Policy Model

Hierarchical RL

Skill Hierarchies
Hierarchical RL: base hierarchical control on skills.

• Component of behavior.
• Performs continuous, low-level control.
• Can treat as discrete action.

Behavior is modular and compositional.

Skills are like subroutines.

 [Wilkes, Wheeler and Gill, 1951]

def abs(x):
 if(x > 0):
 return x
 else:
 return -x

Hierarchical RL
RL typically solves a single problem monolithically.

Hierarchical RL:
• Create and use higher-level macro-actions.
• Problem now contains subproblems.
• Each subproblem is also an RL problem.

Options Framework: theoretical basis for skill acquisition,
learning and planning using higher-level actions (options).

Hierarchical RL

!

Hierarchical RL
Skill

Problem

The Options Framework

An option o is a policy unit:
• Initiation set
• Termination condition
• Option policy

An option is one formal model of a skill.

[Sutton, Precup and Singh 1999]

I
o

: S ! {0, 1}
�
o

: S ! [0, 1]
⇡
o

: S ⇥A ! [0, 1]

Actions as Options
A primitive action a can be represented by an option:

•
•

•

A primitive action can be executed anywhere, lasts exactly one
time step, and always chooses action a.

Ia(s) = 1, 8s 2 S
�a(s) = 1, 8s 2 S

⇡a(s, b) =

⇢
1 a = b
0 otherwise

Questions
Given an MDP:

 ... let’s replace A with a set of options O (some of which may
be primitive actions).

• How do we characterize the resulting problem?
• How do we plan using options?
• How do we learn using options?
• How do we characterize the resulting policies?

(S,A,R, T, �)

SMDPs
The resulting problem is a Semi-(Markov Decision Process).
This consists of:

• Set of states
• Set of options
• Transition model
• Reward function
• Discount factor (per step)

In this case:
• All times are natural numbers.
• “Semi” here means transitions can last t timesteps.
• Transition and reward function involve time taken for

option to execute.

S
O

P (s0, t|o, s)
R(s0, s, t)
�

Easy

Q

⇡(s, o) = Et,s0 [R(s0, s, t)] + Et,s0 [�
t
⇡(s0, o0)Q⇡(s0, o0)]

All things flow from Bellman.

Example

(Sutton, Precup and Singh, AIJ 1999)

Example

(Sutton, Precup and Singh, AIJ 1999)

Example

(Sutton, Precup and Singh, AIJ 1999)

What are Skills For?
Lots of things!

A few salient points:
• Rewiring.
• Transfer.
• Skill-Specific Abstractions.

Rewiring
Adding an option changes the connectivity of the MDP.
This affects:

• Learning and Planning.
• Exploration.
• State-visit distribution.
• Diameter of problem.

(Sutton, Precup and Singh, AIJ 1999)

Transfer
Use experience gained while solving one problem to improve
performance in another.

Skill transfer:
• Use options as mechanism for transfer.
• Transfer components of solution.
• Can drastically improve performance
• ... even if it takes a lot of effort to learn them.

General principle: subtasks recur.

Transfer
Tasks drawn from parametrized family.

• Common features present.
• Options defined using only common features.

(Konidaris and Barto, IJCAI 2007)

Skill-Specific Abstractions
Options provide opportunities for abstraction

• Split high-dimensional problem into subproblems ...
• ... such that each one supports a solution using an

abstraction.

Working hypothesis: behavior is piecewise low-dimensional.

Skill-Specific Abstractions

file://localhost/Users/gdk/Desktop/yellow_convertible_sports_car.svg

Skill Discovery
Where do skills come from?

Discover options autonomously, through interaction with an
environment.

• Typically subgoal options.
• This means that we must determine .
• Sometimes also .

The question then becomes:
• Which states are good subgoals?

�
o

R
o

Betweenness Centrality
Consider an MDP as a graph.

• States are vertices.
• Edges indicate possible transition between two states.

Further, let us assume a task distribution over start states and
goal pairs:

• PT (s, e)
(Simsek and Barto, 2008)

Betweenness Centrality
We can define the betweenness centrality of a vertex (state) as:

This indicates it probability of being on a shortest path from s
to e; if we define:

• Shortest path as optimal solution.
•  

... then we get something sensible for RL.

X

s,e

�se(v)

�se
wse

wse = PT (s, e)

(Simsek and Barto, 2008)

Betwenness Centrality

(Simsek and Barto, 2008)

Skill Acquisition
• A robot learning to solve a task
• Extracting skills from solution
• Deploying them in a new task

[Konidaris et al., 2011]

Training Room

Acquired Skills

The Test Room

The Test Room

The Test Room

[Konidaris et al., 2011]

Innate Controllers Acquired Skills

300

400

500

600

700

800

900
Ti

m
e

State Abstraction

Key Idea
How can we create a model of an environment that is
maximally abstract but still allows the agent to plan?

What is the fundamental question of probabilistic planning?

Given a state and a sequence of high-level actions:
• What is the probability of being able to execute it?
• What is the expected reward?

[Konidaris et al., 2014, 2015]

Symbols for Planning
A plan p = {o1, ..., on} from a state distribution Z is a sequence
of actions to be executed from a state drawn from Z.

Starting from the corridor ...
• GoToDoor
• TurnHandle
• PushDoorOpen
• EnterRoom ...

So:
• Which mathematical objects do we need to

determine the probability with which we
can execute any plan p?

Symbols for Planning
We need one classifier and one operator per skill.

Initiation classifier:

...

Symbols for Planning
We need one classifier and one operator per skill.

Image distribution:

... ...

Probabilistic Planning

...

distribution over states

probabilistic initiation set

Z

s
⇥
probability of

execution

probabilistic
distribution  
over states

Must deal with distributions over states in the future.

Defining a Symbol

What do operations on our symbols mean?

(concrete boolean algebra)

Probabilistic Symbols
Learning symbolic representations

• Execute options and get some data

• For each option:
• Partition into ~abstract subgoal options
• For each partitioned option:

• Probabilistic classifier for init distribution
• Density estimator for image distribution
• Regression for reward model

(s, o, s0, r) (s, I
o

?)

Learning Symbolic Representations

Symbolic Planning

Learning Symbolic Representations

Symbolic Representations

symbol1symbol0

Symbolic Representations

symbol1

symbol3 symbol4 symbol5

Symbolic Representations

symbol0

symbol2 symbol3

symbol8 and symbol12

symbol8 and symbol11

Symbolic Representations

symbol1

symbol2symbol3symbol5 and symbol6

Symbolic Planning

True Abstraction Hierarchies
Base MDP:
Successive MDPs:

M0 = {S0, A0, R0, P0}
Mi = {Si, Ai, Ri, Pi}

1

2

3

Taxi
Options:
1. up, down, left, right, pick up, drop off
2. drive to each depot, pick up, drop off
3. passenger-to-depot

[Konidaris, IJCAI 2016]

Reinforcement Learning

Thank you!
Questions?

