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Real-Valued States

What if the states or actions are real-valued?

Need real-valued: Key issues:
 Policies * Uncountable infinity
 Value Functions * May never revisit states

* Environmental Models * Must generalize




Function Approximation

Exactly as we have seen before.

* Represent function f(z) in parametrized form:

f(z, w)

... for some parameter vector w.
*  Write an objective function in terms of w.

» Optimize (typically gradient descent).
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Value Function Approximation

Represent Q function:
Q(s,a,w) : R" - R
Objective function?

Samples of form:

(Sia Uiy T3y Si41, a'i—l—l)
Minimize summed squared TD error:

mmz sz, Q;, W) —T; — 7@(5i+17 Ai41, w))2



Value Function Approximation

Given a function approximator, compute the gradient and
descend it.

Simplest thing you can do:
® Linear value function approximation.
o Use set of basis functions ¢1, ..., ®p,
e Qs a linear function of them:

Q(s,a) =w - P(s,a) szgb Si, ;)



Function Approximation

One choice of basis functions:
* Just use state variables directly: |1, z, y]

More powerful:
® Polynomials in state variables.
° Istorder: [1,z,y, 2y
e 2nd order: [1,z,y, zy, 2%, y°, 2%y, y z, 27y
® This is like a Taylor expansion.



Function Approximation

Another:
® Fourier terms on state variables.
* [1,cos(mx), cos(my), cos(m|x + yl)|

G- [0,1]




Objective Function Minimization

First, let’s do stochastic gradient descent.

As each data point (transition) comes in
- compute gradient of objective w.r.t. data point
- descend gradient a little bit

A

Q(s,a) =w- ®(s,a)

i

mmz $i0;) = 75 — W - G(si11,ai11))7



Gradient

For each weight w;:

aiwj ; (w-@(si,a;) —ri —yw - P(Sit1, ai+1))2
= 2 Z (W P(sisa;) —ri —yw - G(Sit1,ai+1)) 5(8i; a;)

1=0

L TD error
so for each s; the contribution is: /

Wjitl = Wj; T & (w AD\Sq ‘) — Ty —yw - <b(87;+1, az‘+1)) ¢j(3ia a,f,;)



A-Gradient

The same logic applies when using eligibility traces.
Wit1 = Wi + a0p(s;, a;)

becomes

Wit1 = W; + aoe
where

er = yAer—1 + (8¢, ay)
€ — (_)

[Sutton and Barto, 1998]



Acrobot

Episode: 1




Acrobot

Sarsa(\) using the Fourier Basis: Acrobot
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Least-Squares TD

Minimize:
2
mmz 87,, az —T; — YW - ¢(3i+17 ai+1))

Error function has a bowl shape, so uniqgue minimum. Just go
right there!



Least-Squares TD

Derivative set to zero:
mn

> (w-d(siyai) =i —yw - P(sit1,ai11)) si, )" =0
1=1

n

TZ Sz &z — Jyw - ¢(Si+1,ai+1))¢T(3i»az‘) — ZTz¢ (Szvai)
—1
w=A""b
A= Z 37,7 az ,7¢ Si+1, a”&-l-l)) ¢T(S’i7 ai)

Zmﬁ (835 ai)

i=1 [Bradtke and Barto, 1996]



LSTD(M\)

Can derive the least-squares version of LSTD(A) in this way.
Try it at home!

*  Write down the obijective function ...
» Sample ri replaced by complex reward estimate.

* You will get a trace vector if you do some clever algebra.
» Trace vector is the same size as w.

[Boyan, 1999]



LSTD(M\)

One inversion solves for w!

But:

- Computationally expensive.

- A may not be invert-able.

» Least-squares behavior sometimes unstable outside of data.

» LSPI: Least Squares Policy lteration

- Requires recomputing A over historical data.
* ai+ changes with the policy

[Lagoudakis and Parr, 2003]



Linear Methods Don’t Scale

Why not!?
* They’re complete.
 They have nice properties (bowl-shaped error).
 They are easy to use!

How many basis functions in a complete nth order Taylor
series of d variables?

(n+1)°




Function Approximation

TD-Gammon: Tesauro (circa 1992-1995)
® At or near best human level
® Learn to play Backgammon through self-play
® |.5 million games
®* Neural network function approximator
®

TD(\)

Changed the way the best human players played.
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Arcade Learning Environment
. ' ' .
Yo Se s So s S

[Bellemare 201 3]




Deep Q-Networks
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Atari

atarting out - 10 minutes of training

The algonthm tries 1o hit the ball back, but
it1s yet teo clumsy to manage.

[Mnih et al,, 2015] video: Two Minute Papers
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Policy Search
Represent policy directly:

w(s,a,0): R", R™ — [0,1]
Why?

Objective function?



Hill Climbing

What if you can’t differentiate 7?

Sample-based optimization:
» Sample some 0 values near your current best¥.
» Adjust your current best to the highest value6.



Aibo Gait Optimization

from Kohl and Stone, ICRA 2004.
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Fig. 2. The elliptical locus of the Aibe’s foot. The half-ellpsz 15 defined by
leagih, height. and 2ositon in the r-y plane

Alltold, the following set of 12 parameters define the Aibo’s
gait [10]:

The front locus (3 parameters: height, x-pos., y-pos.)
The rear locus (3 parameters)

Locus length

Locus skew multiplier in the x-y plane (for turning)
The height of the front of the body

The height of the rear of the body

The time each foot takes to move through its locus
The fraction of time each foot spends on the ground




PoWER and PI2

More recently, two closely related algorithms:
® Generate some sample 0 values.
®* Next f is sum of prior samples weighted by reward.

(Theodorou and Schaal 2010, Kober and Peters 201 1)



REINFORCE

If we can differentiate 7 ...
* Compute and ascend OR /060
® This is the gradient of return w.r.t policy parameters

REINFORCE: one particularly popular sample-based estimate
of the gradient.

VTF(St, ¢, 9)

W(St, A, (9)

A@t — T'¢



Policy Search

Slightly more general theorem - policy gradient theorem.

OR or(s.a
= ()Y T (@) b(s)

S a

Therefore, one way is to learn Q and then ascend gradient.
Q need only be defined using basis functions computed from 6.

[Sutton et al. 1999]



Deep Policy Search

hanger Y hammer

Figure 1: Our method learns visuomotor policies that directly use camera image observa-
tions (left) to set motor torques on a PR2 robot (right).

conv1 conv3 spatial softmax feature motor
Y‘ fiters ponts torques
fully fully fully
5x5 conv 5x5 conv expected connected | connected | connected
RelU RelU 2D position RelU RelU linear

13 100

"7

robot
configuration

[Levine et al., 201 6]



Deep Policy Search

automatically
r requires robot collect visual
pose data

\
learn initial P
local [traln pose ]
controllers )

initial initial
controllers visual features

collect samples
from pi

train global
policy g to match
local controllers pg

optimize local
controllers pj

[Levine et al., 201 6]



Robotics

Learned Visuomotor Policy: Shape sorting cube

[Levine et al., 2016]
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Learning a Model
Learn a model:

T(Si-l-l |S’i7 7% UJ)
Why?

Objective function?

Samples of form:
(Sia Qi, T3y Si41, ai—l—l)

Maximize likelihood of observed transitions:

mu?JX H?:lT(Si+1 |5i7 a;, ’LU)



Procedure

Model-based RL algorithms roughly look like:

-+ ¢ Get some transition data

* Learn a model

* Run RL on samples from that model to convergence
— ¢+ Repeat

Advantages!

This never works.Why?



PILCO

The main issue is that your model is never exactly right.
® Policy specialized to model.
® Typically assume predictions are “correct”.
® But the model is uncertain!

Recent breakthrough: Bayesian policy search:

/M 7 zt: R(St)_

[Deisenroth et al, 201 1]



PILCO

Combine Gaussian process dynamics learning with analytic
policy gradient methods.

trial #1 (random actions)




Deep Models

input observations  stacked context  ConvNet predicted observation
= Q)
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[Weber et al., 2017]



Deep Models

a) Imagination core b) Single imagination rollout c) Full 12A Architecture ,

V
Policy Net  Env. Model \ R Modelbased path / Model-free path
N Aggregator
e
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Figure 1: I2A architecture. - notation indicates imagined quantities. a): the imagination core (IC)
predicts the next time step conditioned on an action sampled from the rollout policy 7. b): the IC

imagines trajectories of features f = (0, 7), encoded by the rollout encoder. c): in the full I12A,
aggregated rollout encodings and input from a model-free path determine the output policy 7.

/

[Weber et al., 2017]



Deep Models

[Weber et al., 201 7]



Deep Models

Sokoban performance
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[Weber et al., 2017]
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Hierarchical RL




Skill Hierarchies

Hierarchical RL: base hierarchical control on skills.
® Component of behavior.
® Performs continuous, low-level control.
® (Can treat as discrete action.

Behavior is modular and compositional.

Skills are like subroutines.
def abs(x):
1f(x > 0):
return X
else:

return -Xx
[Wilkes, Wheeler and Gill, 195 1]



Hierarchical RL

RL typically solves a single problem monolithically.

Hierarchical RL:
® Create and use higher-level macro-actions.

® Problem now contains subproblems.
® Each subproblem is also an RL problem.

Options Framework: theoretical basis for skill acquisition,
learning and planning using higher-level actions (options).



Hierarchical RL




Hierarchical RL
Skill

Problem




The Options Framework

An option is one formal model of a skill.
An option o is a policy unit:

* |Initiation set I, : S — {0,1}

* Termination condition 5, : S — [0, 1]

e Option policy 7, : S XA — [0, 1]

//‘ \ [Sutton, Precup and Singh 1999]
A\
11




Actions as Options

A primitive action a can be represented by an option:

° J.(s)=1,Vs € S
®* B.(s)=1,Vs €S
1 a=b

* Ta($,0) = <\ 0 otherwise

A primitive action can be executed anywhere, lasts exactly one
time step, and always chooses action a.



Questions

Given an MDP:
(S,A,R,T,)

... let’s replace A with a set of options O (some of which may
be primitive actions).

How do we characterize the resulting problem!?
How do we plan using options!?

How do we learn using options?

How do we characterize the resulting policies?



SMDPs

The resulting problem is a Semi-(Markov Decision Process).
This consists of:

S Set of states

o O Set of options

° P(s,tlo,s) Transition model

* R(s',s,t) Reward function

° Discount factor (per step)
In this case:

® All times are natural numbers.
®* “Semi” here means transitions can last t timesteps.

® Transition and reward function involve time taken for
option to execute.



Easy

Q" (s,0)

4

lt,s’ [R(S/, S, t)] _|_ <1j't,s’ [’YtW(S/; 0/)Qﬂ-(8/7 0/)]

All things flow from Bellman.
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HALLWAYS —-

(Sutton, Precup and Singh,Al] 1999)

4 stochastic
primitive actions

up
Fail 33%
Ieft—‘—‘ nght e time
down

8 multi-step options
(to each rcom's 2 hallways)
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Example

Primitive
options
O=A
r e aele ":: .
“aean oI5
AL L IL] L
Hallway
options Q.
O=H of

Initial Values lteration #1 lteration #2
(Sutton, Precup and Singh, Al 1999)



Example

Primitive

d
hallway
options

O=AUH

an

Itertion #

Iertio | #1

Initial values

- -L

—

L
 —
L J

AR ARAE AR AL 2L 2L 2K

* sloo o@P

Iteratin #

Iteration #3

Ilteration #5

(Sutton, Precup and Singh,Al] 1999)



What are Skills For?

Lots of things!

A few salient points:
® Rewiring.
® Transfer.
o Skill-Specific Abstractions.



Rewiring

Adding an option changes the connectivity of the MDP.
This affects:

® |earning and Planning.

* Exploration.

® State-visit distribution.

® Diameter of problem.

4 stochastic
primitive actions

up

Fail 33%
Ierrv—‘—- nght S

down

8 multi-step options
(to each rcom's 2 hallways)

(Sutton, Precup and Singh,Al] 1999)



Transfer

Use experience gained while solving one problem to improve
performance in another.

Skill transfer:
® Use options as mechanism for transfer.
® Transfer components of solution.
® (Can drastically improve performance
e ..even if it takes a lot of effort to learn them.

General principle: subtasks recur.



Transfer

Tasks drawn from parametrized family.
* Common features present.
® Options defined using only common features.

7030 I I I | |
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(a) Learning curves for agents with problem-space
options.
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5000 Pe
w» 4000
c
O
o
< 3000- |
2000 - .
1000 - 1
U 1 1 1 1 J
10 20 30 40 g0 o0 70

Episades

(b) Learning curves for agents with agent-space op-
tions, with varying numbers of training experiences.

(Konidaris and Barto, [JCAIl 2007)



Skill-Specific Abstractions

Options provide opportunities for abstraction
® Split high-dimensional problem into subproblems ...

® ...such that each one supports a solution using an
abstraction.

Working hypothesis: behavior is piecewise low-dimensional.


file://localhost/Users/gdk/Desktop/yellow_convertible_sports_car.svg

Skill Discovery

Where do skills come from?

Discover options autonomously, through interaction with an
environment.

® Typically subgoal options.
e This means that we must determine 3.
e Sometimes also F,.

The question then becomes:
®* Which states are good subgoals?



Betweenness Centrality

Consider an MDP as a graph.
® States are vertices.
® Edges indicate possible transition between two states.

Further, let us assume a task distribution over start states and
goal pairs:
¢ PT (37 6)
(Simsek and Barto, 2008)



Betweenness Centrality

We can define the betweenness centrality of a vertex (state) as:
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This indicates it probability of being on a shortest path from s
to e; if we define:

® Shortest path as optimal solution.
°* ws. = Pr(s,e)

... then we get something sensible for RL. (Simsek and Barto, 2008)



Betwenness Centrality

(Simsek and Barto, 2008)



Skill Acquisition

®* A robot learning to solve a task
® Extracting skills from solution
® Deploying them in a new task

[Konidaris et al., 201 1]
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The Test Room
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The Test Room

Median Test Performance Comparison

Without Acquired Skills With Acquired Skills




The Test Room
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[Konidaris et al., 201 1]



State Abstraction




Key ldea

How can we create a model of an environment that is
maximally abstract but still allows the agent to plan?

What is the fundamental question of probabilistic planning?

Given a state and a sequence of high-level actions:
* What is the probability of being able to execute it?
* What is the expected reward!?

[Konidaris et al,, 2014, 201 5]



Symbols for Planning

A plan p = {0y, ..., 0n} from a state distribution Z is a sequence
of actions to be executed from a state drawn from Z.

Starting from the corridor ...
* GoloDoor
® TurnHandle
® PushDoorOpen
* EnterRoom ...

So:

® Which mathematical objects do we need to
determine the probability with which we
can execute any plan p?



Symbols for Planning

We need one classifier and one operator per skill.

Initiation classifier:

—

&



Symbols for Planning

We need one classifier and one operator per skill.

Image distribution:




Probabilistic Planning

Must deal with distributions over states in the future.

probabilistic initiation set

>
probabilistic
X distribution
probability of over states
execution

distribution over states



Defining a Symbol

What do operations on our symbols mean?

grounding
classifier

(concrete boolean algebra)



Probabilistic Symbols

Learning symbolic representations

 Execute options and get some data
(s,0,8,1) (8,1,7)

* For each option:
- Partition into ~abstract subgoal options
* For each partitioned option:
* Probabilistic classifier for init distribution
* Density estimator for image distribution
 Regression for reward model



Learning Symbolic Representations
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Symbolic Planning




Learning Symbolic Representations




Symbolic Representations

(:action nav_to_cooleril
:parameters ()
:precondition (and (symboll))
reffect (and (symbolO) (not (symboll))
(decrease (reward) 37.25))
)

e

.

i

.’ ® =
!A‘. ‘—" ‘i"

5
N

symbol0 symboll



Symbolic Representations

!
.
“-:'I ¢
(:action cupboard_openl ®
:parameters () Z
:precondition (and (symboll) (symbol3) (symbol4))
reffect (and (symbol5) (not (symbol4)) ©
(decrease (reward) 67.44)) )
) ;
FJ;‘A = b
symboll

symbol3 symbol4 symbol5



Symbolic Representations |

(:action pick_upil
:parameters ()
:precondition (and (symbolO) (symbol8)
(symbol12))
:effect (and (symbolil) (symbol2)
(not (symbol3)) (not (symbolil2))

i

(decrease (reward) 52.62)) F

symbol8 and symboll2

L
r.

symbol8 and symbolll symbol?2 symbol3

&
)
|
roo
symbol0




b e

Symbolic Representations

(:action pick_up2 k
:parameters () |
:precondition (and (symboll) (symbol3) |

(symbol5) (symbol6) (symbolil)) o
:effect (probabilistic
0.0559 (and)

0.9441 (and (symbol2) (not (symbol3)) sl

(decrease (reward) 53.42)) f=3- {

)

symboll

symbol5 and symbolé6 symbol3 symbol2



Symbolic Planning
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True Abstraction Hierarchies

Base MDP: MO — {S()v AO7 R07 PO}
Successive MDPs: M; = {S;, A;, R;, P;}




Taxi

Options:

|. up, down, left, right, pick up, drop off
2. drive to each depot, pick up, drop off
3. passenger-to-depot

I

| SRR ¢
[Konidaris, [JCAI 2016]

Hierarchical Planning

Query Level Matching Planning Total Base + Options Base MDP

1 2 <1 <1 <1 770.42 1423.36
2 I <1 10.55 11.1 1010.85 1767.45
3 0 12.36 1330.38 1342.74 1174.35 1314.94




Reinforcement Learning

S




Thank you!

Questions!?




