Advanced Reinforcement Learning

George Konidaris gdk@cs.brown.edu

Reinforcement Learning

The World

Discrete RL

Real-Valued States

What if the states or actions are real-valued?

Need real-valued:

- Policies
- Value Functions
- Environmental Models

Key issues:

- Uncountable infinity
- May never revisit states
- Must generalize

Exactly as we have seen before.

• Represent function f(x) in parametrized form:

f(x, w)

- ... for some parameter vector w.
- Write an objective function in terms of w.
- Optimize (typically gradient descent).

DEO SPE

EO SPE

Value Function Approximation

Represent Q function:

$$Q(s, a, w) : \mathbb{R}^n \to \mathbb{R}$$

Objective function?

Samples of form:

$$(s_i, a_i, r_i, s_{i+1}, a_{i+1})$$

Minimize summed squared TD error:

$$\min_{w} \sum_{i=0}^{n} \left(Q(s_i, a_i, w) - r_i - \gamma Q(s_{i+1}, a_{i+1}, w) \right)^2$$

Value Function Approximation

Given a function approximator, compute the gradient and descend it.

Simplest thing you can do:

- Linear value function approximation.
- Use set of basis functions $\phi_1, ..., \phi_n$
- Q is a linear function of them:

$$\hat{Q}(s,a) = w \cdot \Phi(s,a) = \sum_{i=1}^{n} w_i \phi(s_i, a_i)$$

One choice of basis functions:

• Just use state variables directly: [1, x, y]

More powerful:

- Polynomials in state variables.
 - Ist order: [1, x, y, xy]
 - 2nd order: $[1, x, y, xy, x^2, y^2, x^2y, y^2x, x^2y^2]$
- This is like a Taylor expansion.

Another:

- Fourier terms on state variables.
 - $[1, cos(\pi x), cos(\pi y), cos(\pi [x+y])]$

Objective Function Minimization

First, let's do stochastic gradient descent.

As each data point (transition) comes in

- compute gradient of objective w.r.t. data point
- descend gradient a little bit

Gradient

For each weight w_j:

$$\frac{\partial}{\partial w_j} \sum_{i=0}^n \left(w \cdot \phi(s_i, a_i) - r_i - \gamma w \cdot \phi(s_{i+1}, a_{i+1}) \right)^2$$
$$= 2 \sum_{i=0}^n \left(w \cdot \phi(s_i, a_i) - r_i - \gamma w \cdot \phi(s_{i+1}, a_{i+1}) \right) \phi_j(s_i, a_i)$$

error

so for each s_i the contribution is:

$$(w \cdot \phi(s_i, a_i) - r_i - \gamma w \cdot \phi(s_{i+1}, a_{i+1})) \phi_j(s_i, a_i)$$

make a step:

$$w_{j,i+1} = w_{j,i} + \alpha (w \cdot \phi(s_i, a_i) - r_i - \gamma w \cdot \phi(s_{i+1}, a_{i+1})) \phi_j(s_i, a_i)$$

$$w_{i+1} = w_i + \phi \phi(s_i, a_i)$$

λ -Gradient

The same logic applies when using eligibility traces.

$$w_{i+1} = w_i + \alpha \delta \phi(s_i, a_i)$$

becomes

$$w_{i+1} = w_i + \alpha \delta e$$

where

$$e_t = \gamma \lambda e_{t-1} + \phi(s_t, a_t)$$
$$e_0 = \bar{0}$$

[Sutton and Barto, 1998]

Acrobot

Acrobot

Least-Squares TD

Minimize:

$$\min_{w} \sum_{i=0}^{n} \left(w \cdot \phi(s_i, a_i) - r_i - \gamma w \cdot \phi(s_{i+1}, a_{i+1}) \right)^2$$

Error function has a bowl shape, so unique minimum. Just go right there!

Least-Squares TD

Derivative set to zero: n

$$\sum_{i=1}^{n} (w \cdot \phi(s_i, a_i) - r_i - \gamma w \cdot \phi(s_{i+1}, a_{i+1})) \phi(s_i, a_i)^T = 0$$
$$w^T \sum_{i=1}^{n} (w \cdot \phi(s_i, a_i) - \gamma w \cdot \phi(s_{i+1}, a_{i+1})) \phi^T(s_i, a_i) = \sum_{i=1}^{n} r_i \phi^T(s_i, a_i)$$

$$w = A^{-1}b$$

$$A = \sum_{i=1}^{n} \left(\phi(s_i, a_i) - \gamma \phi(s_{i+1}, a_{i+1}) \right) \phi^T(s_i, a_i)$$

$$b = \sum_{i=1}^{n} r_i \phi^T(s_i, a_i)$$

[Bradtke and Barto, 1996]

$LSTD(\lambda)$

Can derive the least-squares version of LSTD(λ) in this way. Try it at home!

- Write down the objective function ...
- Sample *r_i* replaced by complex reward estimate.
- You will get a trace vector if you do some clever algebra.
- Trace vector is the same size as w.

[Boyan, 1999]

$LSTD(\lambda)$

One inversion solves for w!

But:

- Computationally expensive.
- A may not be invert-able.
- Least-squares behavior sometimes unstable outside of data.
- LSPI: Least Squares Policy Iteration
- Requires recomputing A over historical data.
 - a_{i+1} changes with the policy

[Lagoudakis and Parr, 2003]

Linear Methods Don't Scale

Why not?

- They're complete.
- They have nice properties (bowl-shaped error).
- They are easy to use!

How many basis functions in a complete *n*th order Taylor series of *d* variables?

$$(n+1)^{a}$$

TD-Gammon: Tesauro (circa 1992-1995)

- At or near best human level
- Learn to play Backgammon through self-play
- I.5 million games
- Neural network function approximator
- TD(λ)

Changed the way the best human players played.

Figure 3. A complex situation where TD-Common's positional judgment is apparently superior to traditional experit thinking. White is to play 4-4. The obvious human play is 8-4* 8-4 11-7, 11-7. (The asterisk denotes that an opponent charket has been hit.) However, TD-Common's objicite is the suprising 8-4*, 8-4, 21-17, 21-17, TD-Common's of the two plays is given in Table 3.

Arcade Learning Environment

DEO SPER

[Bellemare 2013]

Deep Q-Networks

[Mnih et al., 2015]

Atari

Starting out - 10 minutes of training

The algorithm tries to hit the ball back, but it is yet too clumsy to manage.

[Mnih et al., 2015]

Atari

[Mnih et al., 2015]

DEO SPE

Policy Search

Represent policy directly:

$$\pi(s, a, \theta) : \mathbb{R}^n, \mathbb{R}^m \to [0, 1]$$

Why?

Objective function?

Hill Climbing

What if you can't differentiate π ?

Sample-based optimization:

- Sample some θ values near your current best θ .
- Adjust your current best to the highest value θ .

Aibo Gait Optimization

from Kohl and Stone, ICRA 2004.

Fig. 2. The elliptical locus of the Aibo's foot. The half-ellipse is defined by length, height, and position in the x-y plane.

All told, the following set of 12 parameters define the Aibo's gait [10]:

- The front locus (3 parameters: height, x-pos., y-pos.)
- · The rear locus (3 parameters)
- · Locus length
- Locus skew multiplier in the x-y plane (for turning)
- · The height of the front of the body
- · The height of the rear of the body
- · The time each foot takes to move through its locus
- · The fraction of time each foot spends on the ground

PoWER and Pl2

More recently, two closely related algorithms:

- Generate some sample θ values.
- Next θ is sum of prior samples weighted by reward.

(Theodorou and Schaal 2010, Kober and Peters 2011)

REINFORCE

If we can differentiate $\pi \dots$

- Compute and ascend $\partial R/\partial \theta$
- This is the gradient of return w.r.t policy parameters

REINFORCE: one particularly popular sample-based estimate of the gradient.

$$\Delta \theta_t = \alpha r_t \frac{\nabla \pi(s_t, a_t, \theta)}{\pi(s_t, a_t, \theta)}$$

Policy Search

Slightly more general theorem - policy gradient theorem.

$$\frac{\partial R}{\partial \theta} = \sum_{s} d^{\pi}(s) \sum_{a} \frac{\partial \pi(s, a)}{\partial \theta} (Q^{\pi}(s, a) - b(s))$$

Therefore, one way is to learn Q and then ascend gradient. Q need only be defined using basis functions computed from θ .

[Sutton et al. 1999]
Deep Policy Search

Figure 1: Our method learns visuomotor policies that directly use camera image observations (left) to set motor torques on a PR2 robot (right).

[Levine et al., 2016]

Deep Policy Search

[Levine et al., 2016]

Robotics

Learned Visuomotor Policy: Shape sorting cube

EO SPERAMUS

[Levine et al., 2016]

Function Approximation

DEO SPE

Learning a Model

Learn a model:

 $T(s_{i+1}|s_i, a_i, w)$

Why?

Objective function?

Samples of form:

$$(s_i, a_i, r_i, s_{i+1}, a_{i+1})$$

Maximize likelihood of observed transitions:

$$\max_{w} \prod_{i=1}^{n} T(s_{i+1}|s_i, a_i, w)$$

Procedure

Model-based RL algorithms roughly look like:

- Get some transition data

 - Learn a model
 Run RL on samples from that model to convergence
 - Repeat

Advantages?

This never works. Why?

PILCO

The main issue is that your model is never exactly right.

- Policy specialized to model.
- Typically assume predictions are "correct".
- But the model is **uncertain**!

Recent breakthrough: Bayesian policy search:

$$\int_M \mathbb{E}\left[\sum_t R(s_t)\right]$$

[Deisenroth et al, 2011]

PILCO

Combine Gaussian process dynamics learning with analytic policy gradient methods.

Figure 1: *I2A architecture.* $\hat{\cdot}$ notation indicates imagined quantities. *a*): the imagination core (IC) predicts the next time step conditioned on an action sampled from the rollout policy $\hat{\pi}$. *b*): the IC imagines trajectories of features $\hat{f} = (\hat{o}, \hat{r})$, encoded by the rollout encoder. *c*): in the full I2A, aggregated rollout encodings and input from a model-free path determine the output policy π .

DEO SPER

Function Approximation

DEO SPE

Skill Hierarchies

Hierarchical RL: base hierarchical control on skills.

- Component of behavior.
- Performs continuous, low-level control.
- Can treat as discrete action.

Behavior is modular and compositional.

Skills are like subroutines.

```
def abs(x):
    if(x > 0):
        return x
    else:
        return -x
```


RL typically solves a single problem monolithically.

Hierarchical RL:

- Create and use higher-level macro-actions.
- Problem now contains subproblems.
- Each subproblem is also an RL problem.

Options Framework: theoretical basis for skill acquisition, learning and planning using higher-level actions (options).

Skill

Problem

The Options Framework

An option is one formal model of a skill.

An option *o* is a policy unit:

- Initiation set $I_o: S \to \{0, 1\}$
- Termination condition $\beta_o: S \to [0, 1]$
- Option policy $\pi_o: S \times A \rightarrow [0, 1]$

[Sutton, Precup and Singh 1999]

Actions as Options

A primitive action *a* can be represented by an option:

•
$$I_a(s) = 1, \forall s \in S$$

• $\beta_a(s) = 1, \forall s \in S$
• $\pi_a(s, b) = \begin{cases} 1 & a = b \\ 0 & \text{otherwise} \end{cases}$

A primitive action can be executed anywhere, lasts exactly one time step, and always chooses action *a*.

Questions

Given an MDP:

 (S, A, R, T, γ)

... let's replace A with a set of options O (some of which may be primitive actions).

- How do we characterize the resulting problem?
- How do we plan using options?
- How do we learn using options?
- How do we characterize the resulting policies?

SMDPs

The resulting problem is a Semi-(Markov Decision Process). This consists of:

- S
- 0
- P(s',t|o,s)
- R(s', s, t)

Set of states Set of options Transition model Reward function Discount factor (per step)

In this case:

- All times are natural numbers.
- "Semi" here means transitions can last t timesteps.
- Transition and reward function involve time taken for option to execute.

$Q^{\pi}(s,o) = \mathbb{E}_{t,s'}[R(s',s,t)] + \mathbb{E}_{t,s'}[\gamma^{t}\pi(s',o')Q^{\pi}(s',o')]$

All things flow from Bellman.

Example

4 stochastic primitive actions

8 multi-step options (to each rcom's 2 hallways)

Target Hallway

(Sutton, Precup and Singh, AIJ 1999)

(Sutton, Precup and Singh, AIJ 1999)

What are Skills For?

Lots of things!

- A few salient points:
 - Rewiring.
 - Transfer.
 - Skill-Specific Abstractions.

Rewiring

Adding an option changes the connectivity of the MDP. This affects:

- Learning and Planning.
- Exploration.
- State-visit distribution.
- Diameter of problem.

(Sutton, Precup and Singh, AIJ 1999)

Use experience gained while solving one problem to improve performance in another.

Skill transfer:

- Use options as mechanism for transfer.
- Transfer components of solution.
- Can drastically improve performance
- ... even if it takes a lot of effort to learn them.

General principle: subtasks recur.

(Konidaris and Barto, IJCAI 2007)

(a) Learning curves for agents with problem-space options.

(b) Learning curves for agents with agent-space options, with varying numbers of training experiences.

Options defined using only common features.

Tasks drawn from parametrized family.

Transfer

• Common features present.

ę

Skill-Specific Abstractions

Options provide opportunities for abstraction

- Split high-dimensional problem into subproblems ...
- ... such that each one supports a solution using an abstraction.

Working hypothesis: behavior is piecewise low-dimensional.

Skill Discovery

Where do skills come from?

Discover options autonomously, through interaction with an environment.

- Typically subgoal options.
- This means that we must determine β_o .
- Sometimes also R_o .

The question then becomes:

• Which states are good subgoals?

Betweenness Centrality

Consider an MDP as a graph.

- States are vertices.
- Edges indicate possible transition between two states.

(Simsek and Barto, 2008)

Betweenness Centrality

We can define the betweenness centrality of a vertex (state) as:

This indicates it probability of being on a shortest path from s to e; if we define:

- Shortest path as optimal solution.
- $w_{se} = P_T(s, e)$

... then we get something sensible for RL.

DEO SPERAMUS

(Simsek and Barto, 2008)

Betwenness Centrality

(Simsek and Barto, 2008)

Skill Acquisition

- A robot learning to solve a task
- Extracting skills from solution
- Deploying them in a new task

[Konidaris et al., 2011]
Training Room

Acquired Skills

The Test Room

The Test Room

Median Test Performance Comparison

Without Acquired Skills

With Acquired Skills

DEO SPER

The Test Room

[Konidaris et al., 2011]

State Abstraction

How can we create a model of an environment that is maximally abstract but still allows the agent to plan?

What is the fundamental question of probabilistic planning?

Given a state and a sequence of high-level actions:

- What is the probability of being able to execute it?
- What is the expected reward?

[Konidaris et al., 2014, 2015]

Symbols for Planning

A plan $p = \{o_1, ..., o_n\}$ from a state distribution Z is a sequence of actions to be executed from a state drawn from Z.

Starting from the corridor ...

- GoToDoor
- TurnHandle
- PushDoorOpen
- EnterRoom ...

So:

 Which mathematical objects do we need to determine the probability with which we can execute any plan p?

Symbols for Planning

We need **one classifier** and one operator per skill.

Initiation classifier:

Symbols for Planning

We need one classifier and **one operator** per skill.

Image distribution:

Probabilistic Planning

Must deal with *distributions over states* in the future.

Defining a Symbol

What do operations on our symbols mean?

(concrete boolean algebra)

Probabilistic Symbols

Learning symbolic representations

- Execute options and get some data $(s, o, s', r) \ (s, I_o?)$
- For each option:
 - Partition into ~abstract subgoal options
 - For each partitioned option:
 - Probabilistic classifier for init distribution
 - Density estimator for image distribution
 - Regression for reward model

Learning Symbolic Representations

Symbolic Planning

Learning Symbolic Representations

EO SPER

Symbolic Representations

Symbolic Representations

symbol1

symbol5

symbol4

symbol3

symbol8 and symbol12 symbol0

Symbolic Representations

symbol1

Symbolic Planning

True Abstraction Hierarchies

Base MDP: $M_0 = \{S_0, A_0, R_0, P_0\}$ Successive MDPs: $M_i = \{S_i, A_i, R_i, P_i\}$

Taxi

Options:

- I. up, down, left, right, pick up, drop off
- 2. drive to each depot, pick up, drop off
- 3. passenger-to-depot

			G
¥		₽ [°]	

[Konidaris, IJCAI 2016]

		Hiera	rchical Plan	ning		
Query	Level	Matching	Planning	Total	Base + Options	Base MDP
1	2	<1	<1	<1	770.42	1423.36
2	1	<1	10.55	11.1	1010.85	1767.45
3	0	12.36	1330.38	1342.74	1174.35	1314.94

Reinforcement Learning

Thank you!

Questions?

