
Convolutional Networks @ DL Indaba

Nando de Freitas, Martin Gorner, Karen Simonyan

Lecture Outline

● Recap.
● Convolutional layers.
● Convolutional neural networks.
● Going deeper: the challenges and how to solve them.
● Beyond image classification.

2

3

Recap

 >TensorFlow and deep learning_
without a PhD

>TensorFlow and deep learning_
without a PhD

#Tensorflow @martin_gorner

 deep
Science !

deep
 Code ...

?
MNIST = Mixed National Institute of Standards and Technology - Download the dataset at http://yann.lecun.com/exdb/mnist/

Hello World: handwritten digits classification - MNIST

http://yann.lecun.com/exdb/mnist/

 @martin_gorner

28x28
pixels

softmax

...

...

0 1 2 9

weighted sum of all
pixels + bias

neuron outputs

Very simple model: softmax classification

784 pixels

L
0,0

In matrix notation, 100 images at a time
w
0,0

 w
0,1

 w
0,2

 w
0,3

 … w
0,9

w
1,0

 w
1,1

 w
1,2

 w
1,3

 … w
1,9

w
2,0

 w
2,1

 w
2,2

 w
2,3

 … w
2,9

w
3,0

 w
3,1

 w
3,2

 w
3,3

 … w
3,9

w
4,0

 w
4,1

 w
4,2

 w
4,3

 … w
4,9

w
5,0

 w
5,1

 w
5,2

 w
5,3

 … w
5,9

w
6,0

 w
6,1

 w
6,2

 w
6,3

 … w
6,9

w
7,0

 w
7,1

 w
7,2

 w
7,3

 … w
7,9

w
8,0

 w
8,1

 w
8,2

 w
8,3

 … w
8,9

 …
w
783,0

 w
783,1

 w
783,2

 … w
783,9

x
x
x
x
x
x
x

x

L
1,0

 L
1,1

 L
1,2

 L
1,3

 … L
1,9

L
2,0

 L
2,1

 L
2,2

 L
2,3

 … L
2,9

L
3,0

 L
3,1

 L
3,2

 L
3,3

 … L
3,9

L
4,0

 L
4,1

 L
4,2

 L
4,3

 … L
4,9

 …
L
99,0

 L
99,1

 L
99,2

 … L
99,9

L
0,0

 L
0,1

 L
0,2

 L
0,3

 … L
0,9

 …

 + b
0
 b

1
 b

2
 b

3
 … b

9

+ Same 10 biases
on all lines

X : 100 images,
one per line,
flattened

784 pixels

10 columns

784 lines

broadcast

 @martin_gorner

 Predictions Images Weights Biases

 Y[100, 10] X[100, 784] W[784,10] b[10]

matrix multiply broadcast
on all lines

Softmax, on a batch of images

applied line
by line

tensor shapes in []

 @martin_gorner

Y = tf.nn.softmax(tf.matmul(X, W) + b)

tensor shapes: X[100, 784] W[748,10] b[10]

matrix multiply broadcast
on all lines

Now in TensorFlow (Python)

 @martin_gorner

Cross entropy:

computed probabilities

actual probabilities, “one-hot” encoded

0 0 0 0 0 0 1 0 0 0

this is a “6”

0.1 0.2 0.1 0.3 0.2 0.1 0.9 0.2 0.1 0.1

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Success ?

 @martin_gorner

import tensorflow as tf

X = tf.placeholder(tf.float32, [None, 28, 28, 1])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))

init = tf.initialize_all_variables()

this will become the batch size, 100

28 x 28 grayscale images

TensorFlow - initialisation

Training = computing variables W and b

 @martin_gorner

model
Y = tf.nn.softmax(tf.matmul(tf.reshape(X, [-1, 784]), W) + b)
placeholder for correct answers
Y_ = tf.placeholder(tf.float32, [None, 10])

loss function

cross_entropy = -tf.reduce_sum(Y_ * tf.log(Y))

% of correct answers found in batch
is_correct = tf.equal(tf.argmax(Y,1), tf.argmax(Y_,1))
accuracy = tf.reduce_mean(tf.cast(is_correct, tf.float32))

“one-hot” encoded

“one-hot” decoding

TensorFlow - success metrics

flattening images

 @martin_gorner

optimizer = tf.train.GradientDescentOptimizer(0.003)
train_step = optimizer.minimize(cross_entropy)

learning rate

TensorFlow - training

loss function

sess = tf.Session()
sess.run(init)

for i in range(1000):
load batch of images and correct answers
batch_X, batch_Y = mnist.train.next_batch(100)
train_data={X: batch_X, Y_: batch_Y}

train

sess.run(train_step, feed_dict=train_data)

success ?

a,c = sess.run([accuracy, cross_entropy], feed_dict=train_data)

success on test data ?
test_data={X: mnist.test.images, Y_: mnist.test.labels}
a,c = sess.run([accuracy, cross_entropy], feed=test_data)

running a Tensorflow
computation, feeding
placeholders

TensorFlow - run !

Tip:
do this
every 100
iterations

 @martin_gorner

import tensorflow as tf

X = tf.placeholder(tf.float32, [None, 28, 28, 1])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
init = tf.initialize_all_variables()

model
Y=tf.nn.softmax(tf.matmul(tf.reshape(X,[-1, 784]), W) + b)

placeholder for correct answers
Y_ = tf.placeholder(tf.float32, [None, 10])

loss function
cross_entropy = -tf.reduce_sum(Y_ * tf.log(Y))

% of correct answers found in batch
is_correct = tf.equal(tf.argmax(Y,1), tf.argmax(Y_,1))
accuracy = tf.reduce_mean(tf.cast(is_correct,tf.float32))

optimizer = tf.train.GradientDescentOptimizer(0.003)
train_step = optimizer.minimize(cross_entropy)

sess = tf.Session()
sess.run(init)

for i in range(10000):
load batch of images and correct answers
batch_X, batch_Y = mnist.train.next_batch(100)
train_data={X: batch_X, Y_: batch_Y}

train
sess.run(train_step, feed_dict=train_data)

success ? add code to print it
a,c = sess.run([accuracy, cross_entropy], feed=train_data)

success on test data ?
test_data={X:mnist.test.images, Y_:mnist.test.labels}
a,c = sess.run([accuracy, cross_entropy], feed=test_data)

initialisation

model

success metrics

training step

Run

TensorFlow - full python code

|

|Go deep
 !|

|

 @martin_gorner

9...0 1 2

sigmoid function

softmax

200

100

60

10

30

784
overkill

;-)

Let’s try 5 fully-connected layers !

 @martin_gorner

K = 200

L = 100

M = 60

N = 30

W1 = tf.Variable(tf.truncated_normal([28*28, K] ,stddev=0.1))

B1 = tf.Variable(tf.zeros([K]))

W2 = tf.Variable(tf.truncated_normal([K, L], stddev=0.1))

B2 = tf.Variable(tf.zeros([L]))

W3 = tf.Variable(tf.truncated_normal([L, M], stddev=0.1))

B3 = tf.Variable(tf.zeros([M]))

W4 = tf.Variable(tf.truncated_normal([M, N], stddev=0.1))

B4 = tf.Variable(tf.zeros([N]))

W5 = tf.Variable(tf.truncated_normal([N, 10], stddev=0.1))

B5 = tf.Variable(tf.zeros([10]))

weights initialised
with random values

TensorFlow - initialisation

 @martin_gorner

X = tf.reshape(X, [-1, 28*28])

Y1 = tf.nn.sigmoid(tf.matmul(X, W1) + B1)

Y2 = tf.nn.sigmoid(tf.matmul(Y1, W2) + B2)

Y3 = tf.nn.sigmoid(tf.matmul(Y2, W3) + B3)

Y4 = tf.nn.sigmoid(tf.matmul(Y3, W4) + B4)

Y = tf.nn.softmax(tf.matmul(Y4, W5) + B5)

weights and biases

TensorFlow - the model

 @martin_gorner

Demo - slow start ?

Relu !

 @martin_gorner

RELU
RELU = Rectified Linear Unit

Y = tf.nn.relu(tf.matmul(X, W) + b)

 @martin_gorner

RELU

 @martin_gorner

Overfitting

Overfitting ?

Cross-entropy loss

Dropout

 @martin_gorner

Dropout

pkeep =

tf.placeholder(tf.float32) TRAINING
pkeep=0.75

EVALUATION
pkeep=1

Yf = tf.nn.relu(tf.matmul(X, W) + B)

Y = tf.nn.dropout(Yf, pkeep)

General Artificial Intelligence

Deep learning research is like playing with lego

Not like this But rather like this

Combinatorial re-use is
robust and amazing for
creativity

28

Convolutional layers

29

Motivation: Locality and translation invariance

● Locality: objects tend to have a local spatial support
● Translation invariance: object appearance is independent of location

The bird occupies a local area and looks the same in different parts of an image.
We should construct neural nets which exploit these properties!

30

Incorporating locality assumptions

● Make fully-connected layer locally-connected
● Each unit/neuron is connected to a local rectangular area – receptive field
● Different units connected to different locations

○ output (“feature map”) lies on a grid itself

fully-connected unit

locality

locally-connected units
with 3×3 receptive field

31

Incorporating invariance assumptions

● Weight sharing
○ units connected to different locations have the same weights
○ equivalently, each unit is applied to all locations

● Convolutional layer ‒ locally-connected layer with weight sharing (translation invariance)

convolutional units
with 3×3 receptive field

locally-connected units
with 3×3 receptive field

weight
sharing

Correlation and convolution

Convolution as searching for patterns

[Matthew Zeiler & Rob Fergus]

Convolutional networks

36

Hubel-Wiesel -> Fukushima -> Lecun and Hinton

http://www.youtube.com/watch?v=8VdFf3egwfg

37

Conv Layer Mechanics
single-channel scenario

● Weight matrix of conv layer is called conv kernel (or filter)
● To compute the output feature map

○ slide the receptive field of the filter over the input and compute dot products
○ receptive field size == filter size

evaluation of a single conv filter with 3⨉3 receptive
field on 4⨉4 input produces 2⨉2 output

filter has
3*3=9 weights

animation credit: https://github.com/vdumoulin/conv_arithmetic

https://github.com/vdumoulin/conv_arithmetic

38

Conv Layer Mechanics
multi-channel scenario

● Conv layer input and output can have multiple channels
○ e.g. 3-channel RGB image or 16-channel feature map

4⨉4⨉1 input, 2⨉2⨉1 output
3*3=9 filter weights 4⨉4⨉3 input, 2⨉2⨉1 output

3*3*3=27 filter weights
4⨉4⨉3 input, 2⨉2⨉2 output

3*3*3*2=54 filter weights

feature maps are 3-D tensors
height ⨉ width ⨉ channels

39

Conv Layer Mechanics
Output size

● We’ll assume multi-channel input & output from now on

● For N⨉N input and kernel size k⨉k the output size is M = N - k + 1

● We consider all receptive fields lying fully within
the input: known as ‘VALID’ convolution

4⨉4⨉cin input
2⨉2⨉cout output

40

Conv Layer Variants
Padded Convolution

● Increase (pad) the input with p zeros on both sides
○ sometimes implemented as a separate padding layer

● Purpose: control output resolution (e.g. preserve resolution)
● Common settings

○ ‘VALID’: p=0
○ ‘SAME’: p = (k - 1)/2 on each side for kernel size k

■ receptive fields go beyond the original input
■ output has the same spatial size as the input

4⨉4⨉cin input, 2⨉2⨉cout output
‘VALID’ padding

5⨉5⨉cin input, 5⨉5⨉cout output
‘SAME’ padding

41

Conv Layer Variants
Strided Convolution

● Conv filter can be applied with a step (“stride”) between receptive fields
● Purposes

○ reduce spatial resolution for faster processing
○ achieve invariance to local translation

● Output size: for input size N, kernel size k, padding p, and stride s

N=5, k=3, p=0, s=2 ⇒ M=2 N=5, k=3, p=1, s=2 ⇒ M=3 N=6, k=3, p=1, s=2 ⇒ M=3

N⨉N input

M⨉M output

42

Conv Layer Variants
Dilated Convolution

● Conv filter is applied with a step (“dilation rate”) between kernel elements
○ k⨉k kernel dilated to size k’=k+(k-1)(r-1), where r is dilation rate

● Purposes
○ large receptive field with a small kernel
○ fast alternative to large kernels

● Output size
○ computed based on the dilated kernel size k’

○

k=3, r=2 ⇒ k’=5
N=7, k’=5, p=0, s=1 ⇒ M=3

N⨉N input

M⨉M output

43

Conv Layer Variants
Transposed Convolution

● Also known as: up-convolution, de-convolution, fractionally-strided convolution
● Purpose: increase the resolution
● Does the opposite of strided convolution

○ implemented by swapping forward and backward operations of standard convolution
● Output size

N⨉N input

M⨉M output

strided convolution transposed convolution

≡
M⨉M input

N⨉N output

 @martin_gorner

W1[4, 4, 3]

W2[4, 4, 3]

+padding

W[4, 4, 3, 2]

filter
size

input
channels

output
channels

stride

convolutional
subsampling

convolutional
subsampling

convolutional
subsampling

Convolutional layer

45

Pooling Layer

● Purposes (same as strided convolution)
○ reduce spatial resolution for faster processing
○ achieve invariance to local translation

● Average pooling
○ computes the average input over the receptive field
○ same as k⨉k strided convolution with weights fixed to 1/(k*k)

● Max pooling
○ computes the max input over the receptive field

● Global pooling
○ pooling with the whole input as the receptive field
○ gets rid of spatial dimensions, full invariance to location
○ can be average or max

Image convolution layer

Modularity - never forget the lego image!

Linear layer

ReLU layer

Conv layer

Conv layer

Pooling layer

54

Convolutional networks
stacking the layers together

 Hacker’s tip

ALL
Convolu-
tional

convolutional layer, 4 channels
W1[5, 5, 1, 4] stride 1

convolutional layer, 8 channels
W2[4, 4, 4, 8] stride 2

convolutional layer, 12 channels
W3[4, 4, 8, 12] stride 2

28x28x1

28x28x4

14x14x8

200

7x7x12

10
fully connected layer W4[7x7x12, 200]
softmax readout layer W5[200, 10]

+ biases on
all layers

Convolutional neural network

K=4

L=8

M=12

W1 = tf.Variable(tf.truncated_normal([5, 5, 1, K] ,stddev=0.1))
B1 = tf.Variable(tf.ones([K])/10)

W2 = tf.Variable(tf.truncated_normal([5, 5, K, L] ,stddev=0.1))

B2 = tf.Variable(tf.ones([L])/10)

W3 = tf.Variable(tf.truncated_normal([4, 4, L, M] ,stddev=0.1))

B3 = tf.Variable(tf.ones([M])/10)

N=200

W4 = tf.Variable(tf.truncated_normal([7*7*M, N] ,stddev=0.1))

B4 = tf.Variable(tf.ones([N])/10)

W5 = tf.Variable(tf.truncated_normal([N, 10] ,stddev=0.1))

B5 = tf.Variable(tf.zeros([10])/10)

filter
size

input
channels

output
channels

weights initialised
with random values

Tensorflow - initialisation

 @martin_gorner

Y1 = tf.nn.relu(tf.nn.conv2d(X, W1, strides=[1, 1, 1, 1], padding='SAME') + B1)

Y2 = tf.nn.relu(tf.nn.conv2d(Y1, W2, strides=[1, 2, 2, 1], padding='SAME') + B2)

Y3 = tf.nn.relu(tf.nn.conv2d(Y2, W3, strides=[1, 2, 2, 1], padding='SAME') + B3)

YY = tf.reshape(Y3, shape=[-1, 7 * 7 * M])

Y4 = tf.nn.relu(tf.matmul(YY, W4) + B4)

Y = tf.nn.softmax(tf.matmul(Y4, W5) + B5)

weights biasesstride

flatten all values for
fully connected layer

input image batch
X[100, 28, 28, 1]

Y3 [100, 7, 7, 12]

YY [100, 7x7x12]

Tensorflow - the model

 @martin_gorner

???

WTFH ???

convolutional layer, 12 channels
W2[5, 5, 6, 12] stride 2
convolutional layer, 12 channels
W2[5, 5, 6, 12] stride 2

convolutional layer, 6 channels
W1[6, 6, 1, 6] stride 1

convolutional layer, 24 channels
W3[4, 4, 12, 24] stride 2
convolutional layer, 24 channels
W3[4, 4, 12, 24] stride 2

convolutional layer, 6 channels
W1[6, 6, 1, 6] stride 1

28x28x1

28x28x6

14x14x12

200

7x7x24

10
fully connected layer W4[7x7x24, 200]
softmax readout layer W5[200, 10]

+ biases on
all layers

+DROPOUT
p=0.75

Bigger convolutional network + dropout

 @martin_gorner

YEAH !

with dropout

62

Convolutional Networks
for image classification

● Now we are ready to build an image classification network
using conv layers

● Activation function: RELU(x) = max(x, 0)

● Typical structure for image classification
○ image → [[conv →] * M → pool] * N → [linear] * K → softmax

63

Case study 1: MNIST classification
LeNet-5 [LeCun et al., 1998]

Task
● hand-written digit classification
● 10 classes

64

Case study 1: MNIST classification
LeNet-5 [LeCun et al., 1998]

Layer configuration:
● 5⨉5 conv, stride=1, ‘VALID’ padding, sigmoid activation
● 2⨉2 average pool, stride=2

65

ImageNet Challenge

● Large-scale image recognition challenge
○ Major computer vision benchmark
○ Running since 2010 (Stanford, UNC)
○ http://www.image-net.org/challenges/LSVRC/

● 1.4M images, 1000 classes
● Main tasks

○ classify an image into 1 of the classes
■ top-1 error

● predicted class should be correct
■ top-5 error

● predict 5 classes, the correct one
should be among them

○ detect all objects in an image

http://www.image-net.org/challenges/LSVRC/

66

ImageNet Challenge
Overview of the classification task

● 2010-11: hand-crafted computer
vision pipelines

● 2012-2016: ConvNets
○ 2012: AlexNet

■ major deep learning success
○ 2013: ZFNet

■ improvements over AlexNet
○ 2014

■ VGGNet: deeper, simpler
■ InceptionNet: deeper, faster

○ 2015
■ ResNet: even deeper

○ 2016
■ ensembled networks, results have saturated

67

Case study 2: AlexNet

● 8-layer ConvNet: 5 conv layers, 3 fc layers
● Ingredients for success

○ Architecture
■ ReLU non-linearities
■ regularisation: dropout, weight decay (L2 penalty)

○ Infrastructure
■ large dataset with random augmentation
■ two GPUs (model split across GPUs), 6 days of training

Krizhevsky et al., 2012

two important components
of successful deep learning models:
architecture and infrastructure

224x224x3
RGB input

1000
class likelihoods

68

With depth: higher-level representations,
more spatial invariance
● spatial resolution is reduced
● #channels is increased

Linear layers at the bottom of AlexNet
contain a lot of parameters

Case study 2: AlexNet
Krizhevsky et al., 2012

layer output size

input image 224x224x3

conv-11x11x96/4 56x56x96

maxpool/2 28x28x96

conv-5x5x256 28x28x256

maxpool/2 14x14x256

conv-3x3x384 14x14x384

conv-3x3x384 14x14x384

conv-3x3x256 14x14x256

maxpool/2 7x7x256

fc-4096 4096

fc-4096 4096

fc-1000 1000

d
e
p
t
h

69

Deeper is Better

● Each weight layer performs a linear operation, followed by non-linearity
○ layer can be seen as a linear classifier itself

● More layers – more non-linearities
○ leads to a more discriminative (more powerful) model

● What limits the number of layers in ConvNets?
○ early ConvNet models used pooling after each conv. layer

■ input image resolution sets the limit: log(N) for N⨉N input
○ computational complexity

70

Building Very Deep ConvNets

● Stack several conv. layers between pooling
○ #conv. layers >> #pooling layers
○ #conv. layers will not affect resolution if

each layer preserves spatial resolution
○ stride = 1 & input padding (‘SAME’ convolution)

● More generally, interleave deep multi-layer blocks
with resolution reduction layers
○ strided conv instead of pooling

71

Building Very Deep ConvNets

● Use stacks of small (3⨉3) conv. layers
○ in most cases, the only kernel size you need
○ a cheap way of building a deep ConvNet

● Stacks have a large receptive field
○ two 3⨉3 layers – 5⨉5 field
○ three 3⨉3 layers – 7⨉7 field

● Less parameters than a single layer
with a large kernel

72

73

74

Case study 3: VGGNet
Simonyan & Zisserman, 2014

● Straightforward implementation of very deep nets:
○ stacks of conv. layers followed by max-pooling
○ 3x3 conv. kernels, stride=1
○ ReLU non-linearities
○ regularisation: dropout, weight decay (L2 penalty)

● A family of architectures
○ derived by injecting more conv. layers

● Infrastructure
○ trained on 4 GPUs (training data split across GPUs)
○ 2-3 weeks

75

VGGNet Incarnations

76

VGGNet Incarnations

77

VGGNet Incarnations

78

VGGNet Incarnations

79

VGGNet Incarnations

80

VGGNet Incarnations

81

VGGNet Incarnations

82

VGGNet Layer Pattern

● Multi-layer stacks (conv. layers, stride=1)
interleaved with resolution reduction
(max-pooling, stride=2)

● Other very deep nets (discussed later)
follow a similar pattern

83

VGGNet Error vs Depth

● Error reduces with depth
● Plateaus after 16 layers

○ we’ll discuss how to fix that

84

Going Deeper
challenges of training very deep ConvNets

and how to solve them

85

Challenges of training very deep ConvNets

● We have seen that depth is important
● Why not to keep adding layers to VGGNet?

Two main reasons:
● computational complexity

○ ConvNet will be too slow to train and evaluate
● optimisation

○ we won’t be able to train such nets

86

Optimisation

● Model optimisation is important
○ some architectures are hard to train – in particular very deep nets

● A plethora of gradient-based optimisation methods
○ weight update rules are different: SGD, rms-prop, Adam, etc.
○ SGD with momentum – typical choice for ConvNets

● Major problem: gradient instability
○ when we backprop through many layers, compute a product of weights
○ if the weights are small, the gradients vanish (get too small)
○ if the weights are large, the gradients explode (get too large)

 The superpower: batch normalisation

88

Batch Normalisation
Ioffe and Szegedy, 2015

● Motivation: the distribution of
activations changes during
training, making it harder

● Batchnorm layer normalises
the input to zero mean
and unit variance

● Can be placed anywhere in
the network
○ typically after each conv layer

before activation

89

Batch Normalisation (2)

● Requires batched training
● Batchnorm is differentiable
● Means and variances are (slightly) different for different batches

○ adds randomness, which is a good regulariser
○ nets with batchnorm need less regularisation, dropout is rarely needed

● Less sensitive to initialisation, can use N(0, 0.01)

90

Residual Connections
Motivation

● Construction to facilitate training of ultra deep nets (100-1000 layers)
○ complementary to batchnorm

● Motivation: after certain depth, deeper nets have higher training error

error curves for VGG-like nets (3⨉3 conv throughout)
with batchnorm

91

Residual Connections

● Identity connection which skips a few layers
● We only need to learn the residual
● Becomes easier to learn identity, if need to

○ just set the weights to 0
● Backprop perspective

○ gradient skips weight layers – no vanishing
○ improves gradient flow through layers

92

ResNets
He at al., 2015-16

● A family of models
○ won the classification task of ImageNet-2015

● Simple network design
○ inspired by VGGNet, but 10x deeper
○ residual connections & batchnorm

93

ResNets
Deeper ResNets have lower training and test errors

94

ResNet ImageNet Results

95

Beyond ImageNet Classification

pre-trained on ImageNet
(VGGNet, ResNet)

96

Fully Convolutional Networks
Shelhamer et al., 2014

● ConvNet w/o linear layers (“fully convolutional”)
○ pre-trained on ImageNet classification

● Penultimate conv layer has 21 channel
○ 20 classes & background

● ConvNet contains pooling layers
○ which reduce resolution
○ compensated by transposed conv

in the end

transposed conv
increases

spatial resolution

97

Two-Stream ConvNet for Video
Simonyan & Zisserman, 2014

● Appearance and motion are processed separately
● Spatial stream ConvNet

○ input: RGB frame
● Temporal stream ConvNet

○ input: motion vector field between several frames
● Each ConvNet can be pre-trained (again!) optical flow

Lipreading (convnets for video)

98

Finding poverty in satellite images (Stanford)

99

Atari with deep RL

http://www.youtube.com/watch?v=p4Kem0wQoHs

General Artificial Intelligence

Visualizing what nets attend to

Nvidia, Max Planck, Google, DeepMind, MSR, Facebook,…

Wang et al (2016)

http://www.youtube.com/watch?v=TpGuQaswaHs

What is Go?

One of the four arts to be mastered by a true scholar (Confucius)

40 million players, 2000 pros: Go schools in Japan, China and S. Korea

Simple rules leading to profound complexity

10^170 possible board configurations > no. of atoms in the universe!

Why is it hard for computers to play?
Sheer complexity of the game means that exhaustive search intractable

Branching factor is 200 in Go compared to 20 in Chess

Primarily a game about intuition rather than brute calculation

Writing evaluation fn to determine who is winning, thought impossible

Combines pattern recognition with search and planning

“Beating a professional Go player” a long-standing grand challenge of AI

General Artificial Intelligence

Training the deep neural networks

Human expert
positions

Supervised Learning
policy network

Reinforcement Learning
policy network

Generates New Data
(30 mil. Positions)

Value network

General Artificial Intelligence

Two networks: Policy and Value Nets
Policy
Network

Value Network

AlphaGo (Mar 2016)

AlphaGo (Oct 2015)

Lee Sedol (9p)
Top player of
past decade

Fan Hui (2p)
3-times reigning
Euro Champion

Internal Testing Calibration External Testing

Wins 5/5 Matches

Wins ⅘ Matches

AlphaGo (May 2017) Ke Jie (9p)
World number 1

Wins 3/3 Matches

Thank you!

