Convolutional Networks @ DL Indaba

Nando de Freitas, Martin Gorner, Karen Simonyan

Lecture Outline

- Recap.
- Convolutional layers.
- Convolutional neural networks.
- Going deeper: the challenges and how to solve them.
- Beyond image classification.

>TensorFlow and deep learning_ without a PhD

#Tensorflow

Google Cloud Platform

@martin_gorner

Hello World: handwritten digits classification - MNIST

05131556/ 657122632654897/30383

MNIST = Mixed National Institute of Standards and Technology - Download the dataset at http://yann.lecun.com/exdb/mnist/

Very simple model: softmax classification

In matrix notation, 100 images at a time

Softmax, on a batch of images

tensor shapes: X[100, 784] W[748,10] b[10] Y = tf.nn.softmax(tf.matmul(X, W) + b) matrix multiply broadcast on all lines

Success?

init = tf.initialize_all_variables()

Training = computing variables W and b

TensorFlow - success metrics

model

Y = tf.nn.softmax(tf.matmul(tf.reshape(X, [-1, 784]), W) + b)
placeholder for correct answers

flattening images

Y_ = tf.placeholder(tf.float32, [None, 10])

Loss function
cross_entropy = -tf.reduce_sum(Y_ * tf.log(Y))

"one-hot" decoding
"one-hot" decoding
"one-hot" decoding
"is_correct = tf.equal(tf.argmax(Y,1), tf.argmax(Y_,1))
accuracy = tf.reduce_mean(tf.cast(is_correct, tf.float32))

"one-hot" encoded

TensorFlow - training

learning rate

optimizer = tf.train.GradientDescentOptimizer(0.003)
train_step = optimizer.minimize(cross_entropy)

loss function

TensorFlow - run !

```
sess = tf.Session()
sess.run(init)
```

success ?

```
for i in range(1000):
    # Load batch of images and correct answers
    batch_X, batch_Y = mnist.train.next_batch(100)
    train_data={X: batch_X, Y_: batch_Y}
```

```
# train
sess.run(train_step, feed_dict=train_data)
```

```
Tip:
do this
every 100
iterations
```

```
a,c = sess.run([accuracy, cross_entropy], feed_dict=train_data)
```

running a Tensorflow computation, feeding placeholders

```
# success on test data ?
test_data={X: mnist.test.images, Y_: mnist.test.labels}
a,c = sess.run([accuracy, cross_entropy], feed=test_data)
```

TensorFlow - full python code

import tensorflow as tf

, initialisation

X = tf.placeholder(tf.float32, [None, 28, 28, 1])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
init = tf.initialize_all_variables()

model
Y=tf.nn.softmax(tf.matmul(tf.reshape(X,[-1, 784]), W) + b)

placeholder for correct answers
Y_ = tf.placeholder(tf.float32, [None, 10])
loss function
cross entropy = -tf.reduce_sum(Y_ * tf.log(Y))

% of correct answers found in batch is_correct = tf.equal(tf.argmax(Y,1), tf.argmax(Y_,1)) accuracy = tf.reduce_mean(tf.cast(is_correct,tf.float32)) optimizer = tf.train.GradientDescentOptimizer(0.003)
train_step = optimizer.minimize(cross_entropy)

sess = tf.Session()
sess.run(init)

for i in range(10000):
 # load batch of images and correct answers
 batch_X, batch_Y = mnist.train.next_batch(100)
 train_data={X: batch_X, Y_: batch_Y}

train

sess.run(train_step, feed_dict=train_data) — Run

success ? add code to print it a,c = sess.run([accuracy, cross_entropy], feed=train_data)

success on test data ?
test_data={X:mnist.test.images, Y_:mnist.test.labels}
a,c = sess.run([accuracy, cross_entropy], feed=test_data)

training step

Let's try 5 fully-connected layers !

joverKill

TensorFlow - initialisation

- K = 200
- L = 100
- M = 60
- N = 30
- W1 = tf.Variable(tf.truncated_normal([28*28, K] ,stddev=0.1))
 B1 = tf.Variable(tf.zeros([K]))

```
weights initialised
with random values
```


- W2 = tf.Variable(tf.truncated_normal([K, L], stddev=0.1))
 B2 = tf.Variable(tf.zeros([L]))
- W3 = tf.Variable(tf.truncated_normal([L, M], stddev=0.1))
- B3 = tf.Variable(tf.zeros([M]))
- W4 = tf.Variable(tf.truncated_normal([M, N], stddev=0.1))
- B4 = tf.Variable(tf.zeros([N]))
- W5 = tf.Variable(tf.truncated_normal([N, 10], stddev=0.1))
- B5 = tf.Variable(tf.zeros([10]))

X = tf.reshape(X, [-1, 28*28])

Y1 = tf.nn.sigmoid(tf.matmul(X, W1) + B1)
Y2 = tf.nn.sigmoid(tf.matmul(Y1, W2) + B2)
Y3 = tf.nn.sigmoid(tf.matmul(Y2, W3) + B3)
Y4 = tf.nn.sigmoid(tf.matmul(Y3, W4) + B4)
Y = tf.nn.softmax(tf.matmul(Y4, W5) + B5)

weights and biases

Demo - slow start?

RELU

RELU = Rectified Linear Unit

Y = tf.nn.relu(tf.matmul(X, W) + b)

RELU

Next

@martin_gorner **Google** Cloud

Overfitting

Dropout

 \odot

pkeep = tf.placeholder(tf.float32)

TRAINING pKeep=0.75

- Yf = tf.nn.relu(tf.matmul(X, W) + B)
- = tf.nn.dropout(Yf, pkeep) Y

Deep learning research is like playing with lego

Not like this

Combinatorial re-use is robust and amazing for creativity

But rather like this

Convolutional layers

Motivation: Locality and translation invariance

- Locality: objects tend to have a local spatial support
- Translation invariance: object appearance is independent of location

The bird occupies a local area and looks the same in different parts of an image. We should construct neural nets which exploit these properties!

Incorporating locality assumptions

- Make fully-connected layer locally-connected
- Each unit/neuron is connected to a local rectangular area receptive field
- Different units connected to different locations
 - output ("feature map") lies on a grid itself

Incorporating invariance assumptions

Weight sharing

- units connected to different locations have the same weights
- equivalently, each unit is applied to all locations
- Convolutional layer locally-connected layer with weight sharing (translation invariance)

Convolution as searching for patterns

For the image, take dark pixel value = 1, light pixel value = 0.

Leow Wee Kheng

Convolutional networks

[Matthew Zeiler & Rob Fergus]

Hubel-Wiesel -> Fukushima -> Lecun and Hinton

Conv Layer Mechanics

single-channel scenario

- Weight matrix of conv layer is called conv kernel (or filter)
- To compute the output feature map
 - slide the receptive field of the filter over the input and compute dot products
 - receptive field size == filter size

filter has 3*3=9 weights

evaluation of a single conv filter with 3×3 receptive field on 4×4 input produces 2×2 output

37

Conv Layer Mechanics

multi-channel scenario

• Conv layer input and output can have multiple channels • e.g. 3-channel RGB image or 16-channel feature map feature maps are 3-D tensors height × width × channels

4×4×1 input, 2×2×1 output 3*3=9 filter weights

4×4×3 input, 2×2×1 output 3*3*3=27 filter weights

4×4×3 input, 2×2×2 output 3*3*3*2=54 filter weights

Conv Layer Mechanics

- We'll assume multi-channel input & output from now on
- For N×N input and kernel size k×k the output size is M = N k + 1
- We consider all receptive fields lying fully within the input: known as 'VALID' convolution

4×4×cin input 2×2×cout output

Padded Convolution

- Increase (pad) the input with p zeros on both sides
 - sometimes implemented as a separate padding layer
- Purpose: control output resolution (e.g. preserve resolution)
- Common settings
 - 'VALID': p=0
 - 'SAME': p = (k 1)/2 on each side for kernel size k
 - receptive fields go beyond the original input
 - output has the same spatial size as the input

4×4×cin input, 2×2×cout output 'VALID' padding

5×5×cin input, 5×5×cout output 'SAME' padding

Strided Convolution

- Conv filter can be applied with a step ("stride") between receptive fields
- Purposes
 - reduce spatial resolution for faster processing
 - achieve invariance to local translation

• Output size:
$$M = \left\lfloor \frac{N+2p-k}{s} \right\rfloor + 1$$
 for input size N, kernel size k, padding p, and stride s

N=5, k=3, p=1, s=2 ⇒ M=3

Dilated Convolution

- Conv filter is applied with a step ("dilation rate") between kernel elements
 - $k \times k$ kernel dilated to size k'=k+(k-1)(r-1), where r is dilation rate
- Purposes
 - large receptive field with a small kernel
 - fast alternative to large kernels
- Output size
 - computed based on the dilated kernel size k'

$$\circ \quad M = \left\lfloor \frac{N + 2p - k'}{s} \right\rfloor + 1$$

k=3, r=2 ⇒ k'=5 N=7, k'=5, p=0, s=1 ⇒ M=3

Transposed Convolution

- Also known as: up-convolution, de-convolution, fractionally-strided convolution
- Purpose: increase the resolution
- Does the opposite of strided convolution
 - implemented by swapping forward and backward operations of standard convolution
- Output size N = s(M-1) + k 2p

Convolutional layer

Pooling Layer

- Purposes (same as strided convolution)
 - reduce spatial resolution for faster processing
 - achieve invariance to local translation
- Average pooling
 - computes the average input over the receptive field
 - same as k×k strided convolution with weights fixed to 1/(k*k)
- Max pooling
 - computes the max input over the receptive field
- Global pooling
 - pooling with the whole input as the receptive field
 - gets rid of spatial dimensions, full invariance to location
 - can be average or max

Image convolution layer

Modularity - never forget the lego image!

$$\mathbf{z}^{l+1} = \mathbf{f}^l(\mathbf{z}^l; \boldsymbol{\theta}^l)$$

 $\frac{dE}{d\boldsymbol{\theta}}$

θ

$$\begin{split} \boldsymbol{\delta}^{l} &:= \frac{\partial E}{\partial \mathbf{z}^{l}} = \frac{\partial E}{\partial \mathbf{z}^{l+1}} \frac{\partial \mathbf{z}^{l+1}}{\partial \mathbf{z}^{l}} = \boldsymbol{\delta}^{l+1} \frac{\partial \mathbf{f}^{l}(\mathbf{z}^{l};\boldsymbol{\theta}^{l})}{\partial \mathbf{z}^{l}} \\ \boldsymbol{\delta}^{l}_{i} &= \sum_{j} \frac{\partial E}{\partial z_{j}^{l+1}} \frac{\partial z_{j}^{l+1}}{\partial z_{i}^{l}} = \sum_{j} \boldsymbol{\delta}^{l+1}_{j} \frac{\partial f_{j}^{l}(\mathbf{z}^{l};\boldsymbol{\theta}^{l})}{\partial z_{i}^{l}} \\ \frac{\partial E}{\partial \boldsymbol{\theta}^{l}} &= \frac{\partial E}{\partial \mathbf{z}^{l+1}} \frac{\partial \mathbf{z}^{l+1}}{\partial \boldsymbol{\theta}^{l}} = \boldsymbol{\delta}^{l+1} \frac{\partial \mathbf{f}^{l}(\mathbf{z}^{l};\boldsymbol{\theta}^{l})}{\partial \boldsymbol{\theta}^{l}} \\ \frac{\partial E}{\partial \boldsymbol{\theta}^{l}_{i}} &= \sum_{j} \frac{\partial E}{\partial z_{j}^{l+1}} \frac{\partial z_{j}^{l+1}}{\partial \boldsymbol{\theta}^{l}} = \sum_{j} \boldsymbol{\delta}^{l+1}_{j} \frac{\partial f_{j}^{l}(\mathbf{z}^{l};\boldsymbol{\theta}^{l})}{\partial \boldsymbol{\theta}^{l}} \end{split}$$

Linear layer

$$z_j = f_j(\mathbf{x}; \boldsymbol{\theta}_j) = \sum_i x_i \theta_{ij}$$

$$\delta_i^l = \sum_j \delta_j^{l+1} \frac{\partial f_j(\mathbf{x}; \boldsymbol{\theta}_j)}{\partial x_i} = \sum_j \delta_j^{l+1} \theta_{ij}$$
$$\frac{\partial E}{\partial \theta_{ij}} = \sum_j \delta_j^{l+1} \frac{\partial f_j(\mathbf{x}; \boldsymbol{\theta}_j)}{\partial \theta_{ij}} = \delta_j^{l+1} x_i$$

ReLU layer

$$z_j = f_j(x_j) = \max(0, x_j)$$

$$\delta_i^l = \sum_j \delta_j^{l+1} \frac{\partial f_j(x_j)}{\partial x_i} = \delta_i^{l+1} \mathbb{I}_{[x_i > 0]}$$

Conv layer

$$\mathbf{y}_{i',j',f'} = b_{f'} + \sum_{i=1}^{H_f} \sum_{j=1}^{W_f} \sum_{f=1}^F \mathbf{x}_{i'+i-1,j'+j-1,f} \boldsymbol{\theta}_{ijff'}$$

$$\frac{\partial E}{\partial \theta_{ijff'}} = \sum_{i'j'f'} \delta_{i'j'f'}^{l+1} \frac{\partial f_{i'j'f'}(\mathbf{x};\boldsymbol{\theta}_{f'})}{\partial \theta_{ijff'}}$$
$$= \sum_{i'j'} \delta_{i'j'f'}^{l+1} \mathbf{x}_{i'+i-1,j'+j-1,f}$$

Conv layer

$$\mathbf{y}_{i',j',f'} = b_{f'} + \sum_{i''=1}^{H_f} \sum_{j''=1}^{W_f} \sum_{f''=1}^{F} \mathbf{x}_{i'+i''-1,j'+j''-1,f''} \boldsymbol{\theta}_{i''j''f''f'}$$
$$i = i' + i'' - 1$$
$$i'' = i - i' + 1$$

$$\delta_{ijf}^{l} = \sum_{i'j'f'} \delta_{i'j'f'}^{l+1} \frac{\partial f_{i'j'f'}(\mathbf{x}, \mathbf{0}_{f'})}{\partial \mathbf{x}_{ijf}}$$
$$= \sum_{i'j'f'} \delta_{i'j'f'}^{l+1} \theta_{i-i'+1,j-j'+1,f,f'}$$

Pooling layer

Convolutional networks

stacking the layers together

Hacker's tip

Convolutional neural network

+ biases on all layers

28×28×1

14×14×8

28×28×4

7x7x12

200

10

.....

convolutional layer, 4 channels WI[5, 5, 1, 4] stride 1

convolutional layer, 8 channels W2[4, 4, 4, 8] stride 2

convolutional layer, 12 channels W3[4, 4, 8, 12] stride 2

fully connected layer softmax readout layer

W4[7x7x12, 200] W5[200, 10]

Tensorflow - initialisation

weights initialised with random values

```
N=200
```

```
W4 = tf.Variable(tf.truncated_normal([7*7*M, N] ,stddev=0.1))
```

```
B4 = tf.Variable(tf.ones([N])/10)
```

```
W5 = tf.Variable(tf.truncated_normal([N, 10] ,stddev=0.1))
```

```
B5 = tf.Variable(tf.zeros([10])/10)
```

input image batch weights stride biases
X[100, 28, 28, 1]
Y1 = tf.nn.relu(tf.nn.conv2d(X, W1, strides=[1, 1, 1, 1], padding='SAME') + B1)
Y2 = tf.nn.relu(tf.nn.conv2d(Y1, W2, strides=[1, 2, 2, 1], padding='SAME') + B2)
Y3 = tf.nn.relu(tf.nn.conv2d(Y2, W3, strides=[1, 2, 2, 1], padding='SAME') + B3)

YY = tf.reshape(Y3, shape=[-1, 7 * 7 * M]) Y4 = tf.nn.relu(tf.matmul(YY, W4) + B4) Y = tf.nn.softmax(tf.matmul(Y4, W5) + B5) Y3 [100, 7, 7, 12] Y3 [100, 7, 7, 12] Y3 [100, 7, 7, 12]

WTXH ???

Bigger convolutional network + dropout

+ biases on all layers

28×28×1

28×28×6

14×14×12

7x7x24

200

10

convolutional layer, 6 channels WI[6, 6, 1, 6] stride 1

convolutional layer, 12 channels W2[5, 5, 6, 12] stride 2

convolutional layer, 24 channels W3[4, 4, 12, 24] stride 2

fully connected layer W4[7x7x24, 200] softmax readout layer

W5[200, 10]

YEAH !

with dropout

Convolutional Networks

for image classification

- Now we are ready to build an image classification network using conv layers
- Activation function: RELU(x) = max(x, 0)
- Typical structure for image classification \circ image \rightarrow [[conv \rightarrow] * M \rightarrow pool] * N \rightarrow [linear] * K \rightarrow softmax

Case study 1: MNIST classification

LeNet-5 [LeCun et al., 1998]

Task

- hand-written digit classification
- 10 classes

Case study 1: MNIST classification

LeNet-5 [LeCun et al., 1998]

Layer configuration:

- 5×5 conv, stride=1, 'VALID' padding, sigmoid activation
- 2×2 average pool, stride=2

ImageNet Challenge

- Large-scale image recognition challenge
 - Major computer vision benchmark
 - Running since 2010 (Stanford, UNC)
 - <u>http://www.image-net.org/challenges/LSVRC/</u>
- 1.4M images, 1000 classes
- Main tasks
 - classify an image into 1 of the classes
 - top-1 error
 - predicted class should be correct
 - top-5 error
 - predict 5 classes, the correct one should be among them
 - detect all objects in an image

ImageNet Challenge

Overview of the classification task

- 2010-11: hand-crafted computer vision pipelines
- 2012-2016: ConvNets
 - 2012: AlexNet
 - major deep learning success
 - 2013: ZFNet
 - improvements over AlexNet
 - o **2014**
 - VGGNet: deeper, simpler
 - InceptionNet: deeper, faster
 - o **2015**
 - ResNet: even deeper
 - 2016
 - ensembled networks, results have saturated

192

13.00

192

1000 class likelihoods

224x224x3 RGB input

8-layer ConvNet: 5 conv layers, 3 fc layers

Max

pooling

Ingredients for success

224

- Architecture
 - ReLU non-linearities
 - regularisation: dropout, weight decay (L₂ penalty)

128

128

- Infrastructure
 - large dataset with random augmentation
 - two GPUs (model split across GPUs), 6 days of training

Max

pooling

two important components of successful deep learning models: architecture and infrastructure

1000

dense

128 Max

pooling

densé

2048

2048

Case study 2: AlexNet

Krizhevsky et al., 2012

layer	output size
input image	224x224x3
conv-11x11x96/4	56x56x96
maxpool/2	28x28x96
conv-5x5x256	28x28x256
maxpool/2	14x14x256
conv-3x3x384	14x14x384
conv-3x3x384	14x14x384
conv-3x3x256	14x14x256
maxpool/2	7x7x256
fc-4096	4096
fc-4096	4096
fc-1000	1000

With depth: higher-level representations, more spatial invariance

- spatial resolution is reduced
- #channels is increased

Linear layers at the bottom of AlexNet contain a lot of parameters

68

Deeper is Better

- Each weight layer performs a linear operation, followed by non-linearity
 - layer can be seen as a linear classifier itself
- More layers more non-linearities
 - leads to a more discriminative (more powerful) model
- What limits the number of layers in ConvNets?
 - early ConvNet models used pooling after each conv. layer
 - input image resolution sets the limit: log(N) for N×N input
 - computational complexity

Building Very Deep ConvNets

Stack several conv. layers between pooling

- #conv. layers >> #pooling layers
- #conv. layers will not affect resolution if each layer preserves spatial resolution
- stride = 1 & input padding ('SAME' convolution)

strided conv instead of pooling

pooling
conv
conv
conv
conv
pooling

Building Very Deep ConvNets

• Use stacks of small (3×3) conv. layers

- in most cases, the only kernel size you need
- a cheap way of building a deep ConvNet
- Stacks have a large receptive field
 - two 3×3 layers 5×5 field
 - three 3×3 layers 7×7 field
- Less parameters than a single layer with a large kernel

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

Case study 3: VGGNet

Simonyan & Zisserman, 2014

- Straightforward implementation of very deep nets:
 - stacks of conv. layers followed by max-pooling
 - 3x3 conv. kernels, stride=1
 - ReLU non-linearities
 - regularisation: dropout, weight decay (L2 penalty)
- A family of architectures
 - derived by injecting more conv. layers
- Infrastructure
 - trained on 4 GPUs (training data split across GPUs)
 - 2-3 weeks

conv-128 maxpool

conv-512 conv-512 maxpool

conv-512 conv-512 maxpool

FC-4096 FC-4096 FC-1000 softmax

11-layer

Started from 11 layers

Started from 11 layers & injected more conv. layers

image
conv-64
maxpool
conv-128
maxpool
conv-256
conv-256
maxpool

conv-64
conv-64
maxpool
conv-128
conv-128
maxpool
conv-256
conv-256
maxpool

image

conv-512 conv-512 maxpool

conv-512
conv-512
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512
maxpool

FC-4096 FC-4096 FC-1000 softmax 11-layer

FC-4096
FC-4096
FC-1000
softmax

13-layer

image	image		
conv-64	conv-64		
maxpool	conv-64		
	maxpool		
conv-128	conv-128		
maxpool	conv-128		
	maxpool		
conv-256	conv-256	-	
conv-256	conv-256		conv-256
maxpool	maxpool		
conv-512	conv-512	-	
conv-512	conv-512		conv-512
maxpool	maxpool		
conv-512	conv-512	1	000 E12
conv-512	conv-512		0011-312
maxpool	maxpool		
FC-4096	FC-4096		
FC-4096	FC-4096		
FC-1000	FC-1000		
softmax	softmax		
11-layer	13-layer		

image	image	image
conv-64	conv-64	conv-64
maxpool	conv-64	conv-64
	maxpool	maxpool
conv-128	conv-128	conv-128
maxpool	conv-128	conv-128
	maxpool	maxpool
conv-256	conv-256	conv-256
conv-256	conv-256	conv-256
maxpool	maxpool	conv-256
		maxpool
conv-512	conv-512	conv-512
conv-512	conv-512	conv-512
maxpool	maxpool	conv-512
		maxpool
conv-512	conv-512	conv-512
conv-512	conv-512	conv-512
maxpool	maxpool	conv-512
		maxpool
FC-4096	FC-4096	FC-4096
FC-4096	FC-4096	FC-4096
FC-1000	FC-1000	FC-1000
softmax	softmax	softmax
11-layer	13-layer	16-layer

image	image	image
conv-64	conv-64	conv-64
maxpool	conv-64	conv-64
	maxpool	maxpool
conv-128	conv-128	conv-128
maxpool	conv-128	conv-128
	maxpool	maxpool
conv-256	conv-256	conv-256
conv-256	conv-256	conv-256 conv-256
maxpool	maxpool	conv-256
		maxpool
conv-512	conv-512	conv-512
conv-512	conv-512	conv-512 conv-512
maxpool	maxpool	conv-512
		maxpool
conv-512	conv-512	conv-512
conv-512	conv-512	conv-512
maxpool	maxpool	conv-512
		maxpool
FC-4096	FC-4096	FC-4096
FC-4096	FC-4096	FC-4096
FC-1000	FC-1000	FC-1000
softmax	softmax	softmax
11-layer	13-layer	16-layer

	image	image		image
	conv-64	conv-64		conv-64
	conv-64	conv-64		conv-64
	maxpool	maxpool]	maxpool
	conv-128	conv-128		conv-128
	conv-128	conv-128		conv-128
	maxpool	maxpool		maxpool
	conv-256	conv-256		conv-256
	conv-256	conv-256		conv-256
	maxpool	conv-256		conv-256
		maxpool]	conv-256
				maxpool
	conv-512	conv-512		conv-512
	conv-512	conv-512		conv-512
	maxpool	conv-512		conv-512
		maxpool		conv-512
				maxpool
	conv-512	conv-512		conv-512
	conv-512	conv-512		conv-512
	maxpool	conv-512		conv-512
		maxpool		conv-512
				maxpool
	FC-4096	FC-4096		FC-4096
	FC-4096	FC-4096		FC-4096
	FC-1000	FC-1000		FC-1000
	softmax	softmax		softmax
r	13-layer	16-layer		19-layer

conv-64 maxpool conv-128 maxpool conv-256 conv-256 maxpool

image

conv-512 conv-512 maxpool

conv-512 conv-512 maxpool

> FC-4096 FC-4096 FC-1000 softmax 11-layer

VGGNet Layer Pattern

- Multi-layer stacks (conv. layers, stride=1) interleaved with resolution reduction (max-pooling, stride=2)
- Other very deep nets (discussed later) follow a similar pattern

image		
conv-64	2-conv/1	
conv-64	2-0011/1	
maxpool	pool/2	
conv-128	2	
conv-128	2-conv/1	
maxpool	pool/2	
conv-256		
conv-256	4	
conv-256	4-conv/1	
conv-256		
maxpool	pool/2	
conv-512		
conv-512	A comula	
conv-512	4-0010/1	
conv-512		
maxpool	pool/2	
conv-512		
conv-512	4-conv/1	
conv-512		
conv-512		
maxpool	pool/2	
FC-4096		
FC-4096	3-fc	
FC-1000		
softmax		

VGGNet Error vs Depth

Top-5 Classification Error (Val. Set)

- Error reduces with depth
- Plateaus after 16 layers
 - we'll discuss how to fix that

Going Deeper

challenges of training very deep ConvNets and how to solve them

Challenges of training very deep ConvNets

- We have seen that depth is important
- Why not to keep adding layers to VGGNet?

Two main reasons:

- computational complexity
 - ConvNet will be too slow to train and evaluate
- optimisation
 - we won't be able to train such nets

Optimisation

- Model optimisation is important
 - some architectures are hard to train in particular very deep nets
- A plethora of gradient-based optimisation methods
 - weight update rules are different: SGD, rms-prop, Adam, etc.
 - SGD with momentum typical choice for ConvNets
- Major problem: gradient instability
 - when we backprop through many layers, compute a product of weights
 - if the weights are small, the gradients vanish (get too small)
 - if the weights are large, the gradients explode (get too large)

The superpower: batch normalisation

Batch Normalisation

loffe and Szegedy, 2015

- Motivation: the distribution of activations changes during training, making it harder
- Batchnorm layer normalises the input to zero mean and unit variance
- Can be placed anywhere in the network
 - typically after each conv layer before activation

Figure 1: (a) The test accuracy of the MNIST network trained with and without Batch Normalization, vs. the number of training steps. Batch Normalization helps the network train faster and achieve higher accuracy. (b, c) The evolution of input distributions to a typical sigmoid, over the course of training, shown as {15, 50, 85}th percentiles. Batch Normalization makes the distribution more stable and reduces the internal covariate shift.

Batch Normalisation (2)

	Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1m}\}$; Parameters to be learned: γ, β Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$			
and the gala second and the second	$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$	// mini-batch mean		
	$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$	// mini-batch variance		
	$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$	// normalize		
THE NEED STREET	$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i)$	// scale and shift		

- Requires batched training
- Batchnorm is differentiable
- Means and variances are (slightly) different for different batches
 - adds randomness, which is a good regulariser
 - nets with batchnorm need less regularisation, dropout is rarely needed
- Less sensitive to initialisation, can use N(0, 0.01)

Residual Connections

Motivation

- Construction to facilitate training of ultra deep nets (100-1000 layers)
 - complementary to batchnorm
- Motivation: after certain depth, deeper nets have higher training error

error curves for VGG-like nets (3×3 conv throughout) with batchnorm

Residual Connections

 $\frac{\partial L}{\partial x} = \frac{\partial L}{\partial H} \frac{\partial H}{\partial x} = \frac{\partial L}{\partial H} \left(\frac{\partial F}{\partial x} + 1 \right)$

- Identity connection which skips a few layers
- We only need to learn the **residual**
- Becomes easier to learn identity, if need to
 - just set the weights to 0
- Backprop perspective
 - gradient skips weight layers no vanishing
 - improves gradient flow through layers

ResNets

He at al., 2015-16

- A family of models
 - won the classification task of ImageNet-2015
- Simple network design
 - inspired by VGGNet, but 10x deeper
 - residual connections & batchnorm

ResNets

Deeper ResNets have lower training and test errors

Beyond ImageNet Classification

Fully Convolutional Networks

Shelhamer et al., 2014

- ConvNet w/o linear layers ("fully convolutional")
 - pre-trained on ImageNet classification
- Penultimate conv layer has 21 channel
 - 20 classes & background
- ConvNet contains pooling layers
 - which reduce resolution
 - compensated by transposed conv in the end

Two-Stream ConvNet for Video

Simonyan & Zisserman, 2014

- Appearance and motion are processed separately
- Spatial stream ConvNet
 - input: RGB frame
- Temporal stream ConvNet
 - input: motion vector field between several frames
- Each ConvNet can be pre-trained (again!)

optical flow

Lipreading (convnets for video)

Finding poverty in satellite images (Stanford)

Atari with deep RL

Visualizing what nets attend to

General Artificial Intelligence

AlphaGo

What is Go?

One of the four arts to be mastered by a true scholar (Confucius) 40 million players, 2000 pros: Go schools in Japan, China and S. Korea Simple rules leading to profound complexity 10^170 possible board configurations > no. of atoms in the universe!

Why is it hard for computers to play?

Sheer complexity of the game means that exhaustive search intractable Branching factor is 200 in Go compared to 20 in Chess Primarily a game about intuition rather than brute calculation Writing evaluation fn to determine who is winning, thought impossible Combines pattern recognition with search and planning "Beating a professional Go player" a long-standing grand challenge of AI

Training the deep neural networks

Two networks: Policy and Value Nets

Thank you!

