
1

Reinforcement Learning:
An Introduction

Deep Learning Indaba
September 2017

Vukosi Marivate and Benjamin Rosman

2

Contents

Contents

1. What is reinforcement learning?

2. Value-based methods

3. Model-based methods and policy search

4. Inverse reinforcement learning and applications

3

What is reinforcement learning?

We’ve seen how to solve many cool problems around
supervised and unsupervised learning

But a major component of intelligence is decision making

4

What is reinforcement learning?

Reinforcement learning is the branch of machine learning
relating to learning in sequential decision making
settings

Behaviour learning

5

From supervised to reinforcement

Supervised learning, single decision point

Multiple decision points
• How do I know if I’m doing the right thing?
• How do my decisions now impact the future?
• Actions affect the environment!

6

Interacting with an environment

Decision maker (agent) exists
within an environment

7

Interacting with an environment

Decision maker (agent) exists
within an environment

Agent takes actions based on
the environment state

8

Interacting with an environment

Decision maker (agent) exists
within an environment

Agent takes actions based on
the environment state

Environment state updates
Agent receives feedback as

rewards

9

A model for decision making

Markov Decision Process (MDP)

M = ⟨S, A, T, R, γ⟩

10

A model for decision making

Markov Decision Process (MDP)

M = ⟨S, A, T, R, γ⟩

• States: encode world configurations

• Actions: choices made by agent

11

A model for decision making

Markov Decision Process (MDP)

M = ⟨S, A, T, R, γ⟩

Transition function: how the world
evolves under actions

12

A model for decision making

Markov Decision Process (MDP)

M = ⟨S, A, T, R, γ⟩

Rewards: feedback signal to agent

13

A model for decision making

Markov Decision Process (MDP)

M = ⟨S, A, T, R, γ⟩

γ ∈ [0,1] discounting for future rewards

14

A model for decision making

Markov Decision Process (MDP)

M = ⟨S, A, T, R, γ⟩

Markov:

“Future is independent of the past, given the present”

15

An example

Cleaning Robot

Actions:

Reward:
• +1 for finding dirt
• -1 for falling into hole
• -0.001 for every move

16

An example

States:
• Position on grid e.g.

– S is (1,1), goal (4,3)

Actions:

Reward:
• +1 for finding dirt
• -1 for falling into hole
• -0.001 for every move

00

1

17

What is the optimal policy?

0.10.1

0.8

18

What is the optimal policy?

Change the action transitions?

0.450.45

0.1

19

What is the optimal policy?

Change the action transitions?

0.450.45

0.1

20

Practically, why RL?

• Treating disease in an individual
• Chronic disease (HIV, Cancer, Schizophrenia, etc.)

– Not a single decision event

Information about:
• patient (demographics,

family history)
• body (test results, etc.)
• disease (genomics,

progression etc.)

How do we find the best treatment
strategy?

21

Evaluating behaviours

Many different trajectories
are possible through a space

42

-18

37.6

Use the total discounted
accumulated rewards
to evaluate them

22

Rewards

Scalar feedback signal
Encode (un)desirable features of behaviours:

Winning/losing, collisions, taking expensive actions, ...

• Sparse
• Delayed
• Only have relative value

23

The Rats of Hanoi

24

Policies

A policy (or behaviour or strategy) ᶢ is any mapping from
states to actions

• Deterministic or stochastic

Optimal policy ᶢ*
• Accumulates maximal rewards over a trajectory
• This is what we want to learn!

25

Immediate vs delayed rewards

Cannot just rely on the instantaneous reward function
Tradeoff: don’t just act myopically (short term)

Notion of value to codify the goodness of a state,
considering a policy running into the future

• Represented as a value function

1 step 5 steps

26

Value Functions

Value function:

The expected return (R) starting at state s and then
executing policy ᶢ

“How good is s under ᶢ?”

accumulated reward

27

Example Value Functions

Reward -1 for
every move

28

Example Value Functions

Random policy:

29

Example Value Functions

Optimal policy:

30

So what?

How do we use these ideas
to do something useful?

31

Value Functions: Recursion

V(s) ⇒ expected return starting at s and following ᶢ
Suggests dependence on V(s’) from next state s’

Bellman Equation:

value of s immediate
reward for all

possible
next

states

the
probability

of
reaching
that state

with ᶢ

value of s’

32

Value Functions: Optimality

Similarly, for an optimal policy ᶢ* with optimal value
function V*:

Bellman Optimality Equation:

take the
best

possible
action

33

Value Functions

Action-value function:

The expected return (R) starting at state s and executing
action a, and then following policy ᶢ

“How good is a in s under ᶢ?”

transition
probability

34

Optimal policies and value functions

ᶢ*(a|s) := 1 if a = argmax Q*(s,a),
0 otherwise

Finding Q* (or V*) is equivalent to finding ᶢ*

Every MDP has an optimal policy

Move in
direction of
greatest value

35

The goal of RL

Given this formulation,
how do we learn a policy?

36

Given the Bellman equation

Solve this as a large system of value function equations

Solving Bellman

• But: non-linear (max operator)
• So: solve iteratively

What are we trying to do here?
• Learn how good each state of the world is, when looking perfectly into the

future

37

Dynamic Programming

Value Iteration: Dynamic Programming (T,R,S,A)

● Iteratively update V (synchronous version)
● At each iteration i:

○ For all states s in S:
■ Update V(s)

But: this requires the full MDP!!
In general, T and R are unknown

38

Value Based Methods

39

Algorithm setup

Value Based Methods:
• No Transition Model
• No Reward Model
• Access to environment for experiment or

access to training data (s,a,r,s’)
• Goal: Learn Value of States, State-Actions

– Policy through learned values

40

Data generation

T and R unknown!

Instead, generate samples of
training data (s,a,r,s’) from
environment 0

-5

41

Learning from Experience

We need
• A method to choose actions

• Some model to keep track of
and learn

– Value Function

42

The Bandit Problem

Consider a row of one-arm bandit
machines in a casino

Set of “arms” (actions) that
each generate rewards from
different distributions

Exploration vs exploitation

43

Action selection

The exploration-exploitation tradeoff!

Maximizing expected returns means balancing between:

• Exploiting gained knowledge (greedy)
– Take the best known action

• Exploring new actions/states (random)
– Try something new

44

Action selection strategies

ε-Greedy (0 < ε ≤ 1):
• With probability 1- ε exploit

– Choose the best action for a state
• With probability ε explore

– Randomly choose action

ε usually higher at beginning of learning, decay later
Softmax
• Sample action given softmax

45

Learning from Experience

We need
• A method to choose actions

• Some model to keep track of
and learn

– Value Function

46

TD Learning

Temporal Difference (TD) Learning:
• Initialise V for all s in S
• For each experience tuple (s,r,s’) under policy ᶢ:

– Update V:

(T,R,S,A)

estimated return
(TD target)

TD error

47

Eligibility traces

- Keep track of where agent has been
- More efficient updates

48

TD(0)

TD(0) Learning:
• Initialise V for all s
• For each trajectory/episode:

– for all s
• e(s) = 0

– for each experience tuple (s,r,s’) under policy ᶢ in episode:
• e(s) = e(s) + 1
•
• for all s in S

–
• e(s) = 0

We are back to normal TD Learning.

(T,R,S,A)

49

TD rollouts

(T,R,S,A)

50

TD(1)

TD(1) Learning:
• Initialise V for all s
• For each trajectory/episode:

– for all s
• e(s) = 0

– for each experience tuple (s,r,s’) under policy ᶢ in episode:
• e(s) = e(s) + 1
•
• for all s in S

–
• e(s) = γe(s)

(T,R,S,A)

Mark whole trajectory

Decay trace

51

Tuning the decay

TD(0) TD(1)
No traces Traces

decay with γ

TD(ᶝ)
Control the
decay rate

52

TD(ᶝ)

TD(ᶝ) Learning:
• Initialise V for all s
• For each trajectory/episode:

– for all s
• e(s) = 0

– for each experience tuple (s,r,s’) under policy ᶢ in episode:
• e(s) = e(s) + 1
•
• for all s in S

–
• e(s) = γᶝe(s)

(T,R,S,A)

Control the speed of decay

53

Intermission

15 minutes

54

Onwards from TD

Recap: we can now learn by estimating V from experience

But:
• Not using actions A

• We would rather learn Q,
for easier policy extraction!
V requires a one-step lookahead model

55

SARSA

• Initialise Q for all s, a
• For each episode

– Initialise
– Choose in from Q
– For each step t in episode

• Take , observe
• Choose in from Q

•

(T,R,S,A)Learn from s, a, r, s’, a’

act

look ahead

learn

56

SARSA

Where did we get the ?
• Taking the next action under Q
• This is an on policy algorithm

(T,R,S,A)

What about off policy?
• Learn about optimal policy while exploring
• Reuse experience from other policies
• Learn from observations

57

Q-Learning

• Initialise Q for all s, a
• For each episode

– Initialise
– For each step t in episode

• Choose in from Q
• Take , observe

(T,R,S,A)

act

learn

take best next action
(so far)

58

Q-Learning demo

(T,R,S,A)

Shreyas Skandan: https://www.youtube.com/watch?v=RTu7G0y4Os4

59

Typical Learning Curves

60

Generalising...

What about extending behaviour to different tasks?

What about building a simulator?
Ask questions about the domain

Solution: we need a model!!!

61

Model Based Methods

62

From Values to Environment Models

Model based reinforcement learning

Learn a model (T and R) from experience
Supervised learning problem

Models let you predict next state and reward
Reason about uncertainty

63

Algorithm setup

Model Based RL:
• No Transition Model
• No Reward Model
• Access to environment for experiment or

access to training data (s,a,r,s’)
• Goal: Learn Transition and Reward Models

– Policy through learned models.

(T,R,S,A)

64

Model Based RL

Learn a Transition and Reward Model

On receiving experience :

(T,R,S,A)

65

• Repeat n times:
– Sample previously observed s
– Sample previously taken a (in s)
– Get r and s’ from model
– Update Q:

• Given
• Update T and R

Dyna Q Algorithm

For each step t in episode
• Choose in from Q
• Take , observe
• Update Q:

Q-learning

model update

sample model to
update Q

66

What else can I do with a model?

Quantify uncertainty in value functions

Uncertainty from:
• Data sparsity
• Inherent stochasticity
• Latent structure

Approaches:
• Monte Carlo sampling
• Simulation

67

A little bit of overkill?

Ok, so we’ve gone to all this trouble to learn T, R → Q …

Can’t we just learn the policy?

68

Policy Search

69

Algorithm setup

Direct Policy Learning:
• No Transition Model
• No Reward Model
• Access to environment for experiment or

access to training data (s,a,r,s’)
• Goal: Learn policy directly

(T,R,S,A)

70

Policy Gradient

Parametrise policy:

Choices:
• Linear combination of basis functions
• Set of state features
• Deep neural network

Goal: find best ᶚ
Optimisation problem!

71

Find ᶚ that maximises J(ᶚ)
e.g. gradient ascent on:

Optimising the policy

Define cost function J(ᶚ):
Start value, average reward per time step…

policy gradient

72

Why policy gradient?

+ High-dimensional action spaces
+ Continuous action spaces
+ Many recent successes in robotics

- Local convergence
- Policy evaluation high variance

73

Recap - RL Approaches

s

ᶢ

a

s a

Q

a

T, R

s a

s’ r

Policy
Search

Value
Function

Based

Model
Based

74

Inverse Reinforcement Learning

75

Inferring a Reward Function

Designing reward functions is hard!
• Often not clear what should be done or how it should be

rewarded
• Where do these come from?

Learn the incentives that explain observed behaviour
• From an “expert”

We do not observe the reward, but want to learn it

76

Inverse Reinforcement Learning

RL

Environment

Reward Policy/
Behaviour

77

Inverse Reinforcement Learning

IRL

Environment

Reward Policy/
Behaviour

78

Algorithm setup

Inverse RL:
• Transition Model (Can be learned)
• No Reward Model
• Observe training data (s,a,s’)
• Goal: Learn a reward model to explain the

behaviour observed through the training data

(T,R,S,A)

79

IRL: From paths to rewards

• Observe trajectory/trajectories (s,a,s’)
• Would like to know:

– What was the goal of the agent?
– What was the reward?

Get to G and avoid water?

80

Maximum Likelihood IRL

ML IRL Algorithm (Intuition):
• Given sample trajectories D
• Initialise a reward function R
• Calculate policy from R, T
• Calculate P(D|ᶢ)
• Calculate gradient, update R

Possible reward function

81

IRL: From paths to rewards

What about different teachers?

Information not in the data when
we get it.

MLIRL with multiple intentions!!!

M Babes et. al. Apprenticeship learning about multiple intentions

82

IRL

Learn from demonstration
• Crowdsourcing

• Showing tasks to robots

• Learning from experts

83

(Some) Reinforcement Learning
Applications

84

Application Areas

Randomised Controlled Trials

An Introduction to Dynamic Treatment Regimes: Marie
Davidian

Efficacy in Sequential Multiple
Assignment Randomized Trial

85

Application Areas

Advertising :(

Nuff Said!!!

86

Application Areas

Strategies to Improve Donations or Collecting Taxes :)

Tax Collections Optimization for New York State - Gerard Miller
et. al.

87

Application Areas

Mobile Health Interventions

Experimental Design & Machine Learning Opportunities in Mobile Health:
Susan Murphy

88

HIV Treatment: Possible Formulation
Features:

● baseline viral load, CD4 count,
● baseline CD4 percentage,
● Age, # previous treatments.

States:
● Viral Load tracked monthly over 24

months.
● Patient’s treatment stage
● bins for the viral load, in copies/mL,

were [0.0,50,100,1K,100K].

Actions:
● Therapy/drug cocktail groups

occurring in the data set.

Reward:
● Negated AUC

V Marivate: Improved empirical methods in reinforcement-learning
evaluation

89

Application Areas

Robotics:
learning

behaviours

90

RL Application Areas

Games
• Standardised testbeds
• Long decision horizons

91

Application Areas

Automated Trading

1: 2: ??? 3:

9292

Thank you + Resources

Vukosi Marivate and Benjamin Rosman

vmarivate@csir.co.za, brosman@csir.co.za

2nd Edition Draft
Recommended. Draft
available online
http://incompleteideas.net/
sutton/book/the-book-2nd.
html

RL class:
https://www.udacity.com/course/reinforcement-l
earning--ud600

mailto:vmarivate@csir.co.za
mailto:brosman@csir.co.za
http://incompleteideas.net/sutton/book/the-book-2nd.html
http://incompleteideas.net/sutton/book/the-book-2nd.html
http://incompleteideas.net/sutton/book/the-book-2nd.html
https://www.udacity.com/course/reinforcement-learning--ud600
https://www.udacity.com/course/reinforcement-learning--ud600

