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What is reinforcement learning?

We’ve seen how to solve many cool problems around 
supervised and unsupervised learning

But a major component of intelligence is decision making
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What is reinforcement learning?

Reinforcement learning is the branch of machine learning 
relating to learning in sequential decision making 
settings

Behaviour learning
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From supervised to reinforcement

Supervised learning, single decision point

Multiple decision points
• How do I know if I’m doing the right thing?
• How do my decisions now impact the future?
• Actions affect the environment!
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Interacting with an environment

Decision maker (agent) exists 
within an environment
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Interacting with an environment

Decision maker (agent) exists 
within an environment

Agent takes actions based on 
the environment state
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Interacting with an environment

Decision maker (agent) exists 
within an environment

Agent takes actions based on 
the environment state

Environment state updates
Agent receives feedback as 

rewards
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A model for decision making

Markov Decision Process (MDP)

M = ⟨S, A, T, R, γ⟩
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A model for decision making

Markov Decision Process (MDP)

M = ⟨S, A, T, R, γ⟩

• States: encode world configurations

• Actions: choices made by agent
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A model for decision making

Markov Decision Process (MDP)

M = ⟨S, A, T, R, γ⟩

Transition function: how the world
evolves under actions
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A model for decision making

Markov Decision Process (MDP)

M = ⟨S, A, T, R, γ⟩

Rewards: feedback signal to agent
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A model for decision making

Markov Decision Process (MDP)

M = ⟨S, A, T, R, γ⟩

γ ∈ [0,1] discounting for future rewards
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A model for decision making

Markov Decision Process (MDP)

M = ⟨S, A, T, R, γ⟩

Markov:

“Future is independent of the past, given the present” 
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An example

Cleaning Robot 

Actions:

Reward:
• +1 for finding dirt
• -1 for falling into hole
• -0.001 for every move
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An example

States:
• Position on grid e.g.

– S is (1,1), goal (4,3)

Actions:

Reward:
• +1 for finding dirt
• -1 for falling into hole
• -0.001 for every move

00

1
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What is the optimal policy?

0.10.1

0.8
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What is the optimal policy?

Change the action transitions?

0.450.45

0.1
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What is the optimal policy?

Change the action transitions?

0.450.45

0.1
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Practically, why RL?

• Treating disease in an individual 
• Chronic disease (HIV, Cancer, Schizophrenia, etc.)

– Not a single decision event 

Information about:
• patient (demographics, 

family history)
• body (test results, etc.)
• disease (genomics, 

progression etc.)

How do we find the best treatment 
strategy?
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Evaluating behaviours

Many different trajectories
are possible through a space

42

-18

37.6

Use the total discounted
accumulated rewards
to evaluate them 
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Rewards

Scalar feedback signal 
Encode (un)desirable features of behaviours:

Winning/losing, collisions, taking expensive actions, ...

• Sparse
• Delayed
• Only have relative value
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The Rats of Hanoi
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Policies

A policy (or behaviour or strategy) ᶢ is any mapping from 
states to actions

• Deterministic or stochastic

Optimal policy ᶢ*
• Accumulates maximal rewards over a trajectory
• This is what we want to learn!
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Immediate vs delayed rewards

Cannot just rely on the instantaneous reward function
Tradeoff: don’t just act myopically (short term)

Notion of value to codify the goodness of a state, 
considering a policy running into the future

• Represented as a value function

1 step 5 steps
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Value Functions

Value function:

The expected return (R) starting at state s and then 
executing policy ᶢ

“How good is s under ᶢ?”

accumulated reward
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Example Value Functions

Reward -1 for 
every move
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Example Value Functions

Random policy:
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Example Value Functions

Optimal policy:
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So what?

How do we use these ideas
to do something useful?
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Value Functions: Recursion

V(s) ⇒ expected return starting at s and following ᶢ
Suggests dependence on V(s’) from next state s’

Bellman Equation:

value of s immediate 
reward for all 

possible 
next 

states

the 
probability 

of 
reaching 
that state 

with ᶢ

value of s’
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Value Functions: Optimality

Similarly, for an optimal policy ᶢ* with optimal value 
function V*:  

Bellman Optimality Equation:

take the 
best 

possible 
action
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Value Functions

Action-value function:

The expected return (R) starting at state s and executing 
action a, and then following policy ᶢ

“How good is a in s under ᶢ?”

transition 
probability
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Optimal policies and value functions

ᶢ*(a|s) := 1 if a = argmax  Q*(s,a),
0 otherwise

Finding Q* (or V*) is equivalent to finding ᶢ*

Every MDP has an optimal policy

Move in 
direction of 
greatest value
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The goal of RL

Given this formulation, 
how do we learn a policy?
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Given the Bellman equation 

Solve this as a large system of value function equations

Solving Bellman

• But: non-linear (max operator)
• So: solve iteratively

What are we trying to do here?
• Learn how good each state of the world is, when looking perfectly into the 

future
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Dynamic Programming

Value Iteration: Dynamic Programming (T,R,S,A)

● Iteratively update V (synchronous version)
● At each iteration i:

○ For all states s in S:
■ Update V(s)

But: this requires the full MDP!!
In general, T and R are unknown
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Value Based Methods
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Algorithm setup

Value Based Methods:
• No Transition Model
• No Reward Model
• Access to environment for experiment or 

access to training data (s,a,r,s’)
• Goal: Learn Value of States, State-Actions

– Policy through learned values
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Data generation

T and R unknown!

Instead, generate samples of
training data (s,a,r,s’) from
environment 0

-5
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Learning from Experience

We need
• A method to choose actions

• Some model to keep track of
and learn

– Value Function
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The Bandit Problem

Consider a row of one-arm bandit
machines in a casino

Set of “arms” (actions) that 
each generate rewards from 
different distributions

Exploration vs exploitation
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Action selection

The exploration-exploitation tradeoff!

Maximizing expected returns means balancing between: 

• Exploiting gained knowledge (greedy)
– Take the best known action

• Exploring new actions/states (random)
– Try something new 
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Action selection strategies

ε-Greedy (0 < ε ≤ 1):
• With probability 1- ε exploit

– Choose the best action for a state
• With probability ε explore

– Randomly choose action

ε usually higher at beginning of learning, decay later
Softmax 
• Sample action given softmax
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Learning from Experience

We need
• A method to choose actions

• Some model to keep track of
and learn

– Value Function
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TD Learning

Temporal Difference (TD) Learning:
• Initialise V for all s in S
• For each experience tuple (s,r,s’) under policy ᶢ:

– Update V:

(T,R,S,A)

estimated return 
(TD target)

TD error
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Eligibility traces

- Keep track of where agent has been
- More efficient updates
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TD(0)

TD(0) Learning:
• Initialise V for all s
• For each trajectory/episode:

– for all s
• e(s) = 0

– for each experience tuple (s,r,s’) under policy ᶢ in episode:
• e(s) = e(s) + 1
•
• for all s in S

–
• e(s) = 0

We are back to normal TD Learning. 

(T,R,S,A)
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TD rollouts

(T,R,S,A)
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TD(1)

TD(1) Learning:
• Initialise V for all s
• For each trajectory/episode:

– for all s
• e(s) = 0

– for each experience tuple (s,r,s’) under policy ᶢ in episode:
• e(s) = e(s) + 1
•
• for all s in S

–
• e(s) = γe(s)

(T,R,S,A)

Mark whole trajectory

Decay trace
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Tuning the decay

TD(0)   TD(1)
No traces Traces 

decay with γ 

TD(ᶝ)
Control the 
decay rate
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TD(ᶝ)

TD(ᶝ) Learning:
• Initialise V for all s
• For each trajectory/episode:

– for all s
• e(s) = 0

– for each experience tuple (s,r,s’) under policy ᶢ in episode:
• e(s) = e(s) + 1
•
• for all s in S

–
• e(s) = γᶝe(s)

(T,R,S,A)

Control the speed of decay
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Intermission

15 minutes
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Onwards from TD

Recap: we can now learn by estimating V from experience

But:
• Not using actions A

• We would rather learn Q,
for easier policy extraction!
V requires a one-step lookahead model
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SARSA

• Initialise Q for all s, a
• For each episode

– Initialise 
– Choose       in       from Q
– For each step t in episode

• Take     , observe 
• Choose           in          from Q

•  

(T,R,S,A)Learn from s, a, r, s’, a’

act

look ahead

learn
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SARSA

Where did we get the  ?
• Taking the next action under Q
• This is an on policy algorithm

(T,R,S,A)

What about off policy?
• Learn about optimal policy while exploring
• Reuse experience from other policies
• Learn from observations
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Q-Learning

• Initialise Q for all s, a
• For each episode

– Initialise 
– For each step t in episode

• Choose     in     from Q
• Take     , observe

(T,R,S,A)

act

learn

take best next action 
(so far)
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Q-Learning demo

(T,R,S,A)

Shreyas Skandan: https://www.youtube.com/watch?v=RTu7G0y4Os4
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Typical Learning Curves
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Generalising...

What about extending behaviour to different tasks?

What about building a simulator?
Ask questions about the domain

Solution: we need a model!!!
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Model Based Methods
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From Values to Environment Models

Model based reinforcement learning

Learn a model (T and R) from experience
Supervised learning problem

Models let you predict next state and reward
Reason about uncertainty
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Algorithm setup

Model Based RL:
• No Transition Model
• No Reward Model
• Access to environment for experiment or 

access to training data (s,a,r,s’)
• Goal: Learn Transition and Reward Models

– Policy through learned models. 

(T,R,S,A)
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Model Based RL

Learn a Transition and Reward Model

On receiving experience                        :
 
 

(T,R,S,A)
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• Repeat n times:
– Sample previously observed s
– Sample previously taken a (in s)
– Get r and s’ from model
– Update Q:

• Given 
• Update T and R

Dyna Q Algorithm

For each step t in episode
• Choose     in     from Q 
• Take     , observe 
• Update Q:

Q-learning

model update

sample model to 
update Q
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What else can I do with a model?

Quantify uncertainty in value functions

Uncertainty from:
• Data sparsity
• Inherent stochasticity
• Latent structure

Approaches:
• Monte Carlo sampling
• Simulation
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A little bit of overkill?

Ok, so we’ve gone to all this trouble to learn T, R  → Q …

Can’t we just learn the policy?
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Policy Search
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Algorithm setup

Direct Policy Learning:
• No Transition Model
• No Reward Model
• Access to environment for experiment or 

access to training data (s,a,r,s’)
• Goal: Learn policy directly

(T,R,S,A)
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Policy Gradient

Parametrise policy: 

Choices:
• Linear combination of basis functions
• Set of state features
• Deep neural network 

Goal: find best ᶚ
Optimisation problem!
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Find ᶚ that maximises J(ᶚ)
e.g. gradient ascent on:

Optimising the policy

Define cost function J(ᶚ):
Start value, average reward per time step…

policy gradient
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Why policy gradient?

+ High-dimensional action spaces
+ Continuous action spaces
+ Many recent successes in robotics

- Local convergence
- Policy evaluation high variance
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Recap - RL Approaches

s

ᶢ

a

s a

Q

a

T, R

s a

s’ r

Policy 
Search

Value 
Function 

Based

Model 
Based
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Inverse Reinforcement Learning
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Inferring a Reward Function

Designing reward functions is hard!
• Often not clear what should be done or how it should be 

rewarded
• Where do these come from?

Learn the incentives that explain observed behaviour
• From an “expert” 

We do not observe the reward, but want to learn it 
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Inverse Reinforcement Learning

RL

Environment

Reward Policy/
Behaviour
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Inverse Reinforcement Learning

IRL

Environment

Reward Policy/
Behaviour
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Algorithm setup

Inverse RL:
• Transition Model (Can be learned)
• No Reward Model
• Observe training data (s,a,s’)
• Goal: Learn a reward model to explain the 

behaviour observed through the training data

(T,R,S,A)
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IRL: From paths to rewards

• Observe trajectory/trajectories (s,a,s’)
• Would like to know:

– What was the goal of the agent?
– What was the reward? 

Get to G and avoid water?
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Maximum Likelihood IRL

ML IRL Algorithm (Intuition):
• Given sample trajectories D
• Initialise a reward function R
• Calculate policy from R, T
• Calculate P(D|ᶢ)
• Calculate gradient, update R

Possible reward function
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IRL: From paths to rewards

What about different teachers?

Information not in the data when 
we get it.

MLIRL with multiple intentions!!! 

M Babes et. al. Apprenticeship learning about multiple intentions
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IRL

Learn from demonstration
• Crowdsourcing

• Showing tasks to robots

• Learning from experts
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(Some) Reinforcement Learning 
Applications
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Application Areas

Randomised Controlled Trials

An Introduction to Dynamic Treatment Regimes: Marie 
Davidian

Efficacy in Sequential Multiple 
Assignment Randomized Trial
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Application Areas

Advertising :(

Nuff Said!!!
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Application Areas

Strategies to Improve Donations or Collecting Taxes :)

Tax Collections Optimization for New York State - Gerard Miller 
et. al.
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Application Areas

Mobile Health Interventions

Experimental Design & Machine Learning Opportunities in Mobile Health: 
Susan Murphy
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HIV Treatment: Possible Formulation
Features: 

● baseline viral load, CD4 count,
● baseline CD4 percentage, 
● Age, # previous treatments.

States: 
● Viral Load tracked monthly over 24 

months. 
● Patient’s treatment stage
● bins for the viral load, in copies/mL, 

were [0.0,50,100,1K,100K].

Actions:  
● Therapy/drug cocktail groups 

occurring in the data set. 

Reward:
● Negated AUC 

V Marivate: Improved empirical methods in reinforcement-learning 
evaluation
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Application Areas

Robotics:
learning 

behaviours
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RL Application Areas

Games
• Standardised testbeds
• Long decision horizons
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Application Areas

Automated Trading

1: 2: ??? 3:
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Thank you + Resources

Vukosi Marivate and Benjamin Rosman

vmarivate@csir.co.za, brosman@csir.co.za

2nd Edition Draft 
Recommended. Draft 
available online 
http://incompleteideas.net/
sutton/book/the-book-2nd.
html

RL class: 
https://www.udacity.com/course/reinforcement-l
earning--ud600

mailto:vmarivate@csir.co.za
mailto:brosman@csir.co.za
http://incompleteideas.net/sutton/book/the-book-2nd.html
http://incompleteideas.net/sutton/book/the-book-2nd.html
http://incompleteideas.net/sutton/book/the-book-2nd.html
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