
Principles of Deep RL
David Silver



Principle #1: Evaluation Drives Progress
Objective, quantitative evaluation drives progress:

● The choice of evaluation metric determines the direction of progress
● Arguably the most important single decision in the course of a project

Leaderboard-driven research:

● Be sure the evaluation metric corresponds closely to the end goal
● Avoid subjective evaluation (e.g. human inspection)

Hypothesis-driven research: 

● Formulate a hypothesis: 
○ “Double-Q learning outperforms Q-learning because it reduces upward bias”

● Verify hypothesis under a broad range of conditions
● Compare like-for-like not against existing state-of-the-art
● Seek understanding rather than leaderboard performance



Principle #2: Scalability Determines Success
● An algorithm’s scalability is its performance gradient with respect to resource 

○ Given more resource, how does performance increase? 

● The resource could be computation, memory or data 
● The scalability of an algorithm ultimately determines its success

○ Image

● Scalability is always (eventually) more important than the starting point
● A good algorithm is (eventually) optimal given infinite resources



Principle #3: Generality Future-Proofs Algorithms
● An algorithm’s generality is its performance across different RL environments
● Avoid overfitting to the present task
● Seek algorithms that will generalise to unknown, future environments
● We can’t predict the future but:

○ Future tasks are likely to be at least as complex as current tasks
○ Difficulties encountered in current tasks will most likely increase

● Conclusion: test against a diverse but realistic set RL environments



Principle #4: Trust in the Agent’s Experience
● Experience (observations, actions, rewards) is the data of RL

○
○ Stream of experience accumulated over the course of the agent’s lifetime in the environment

● Trust in experience as the sole source of knowledge
○ The temptation is always there to leverage our human expertise (human data, features, 

heuristics, constraints, abstractions, domain manipulations)

● Learning from experience may seem impossible
○ Accept the core problem of RL is hard
○ It is the central problem of AI
○ It is worth the effort

● Learning from experience always wins in the long run



Principle #5: State is Subjective
● Agents should construct their own state from their experience

○

● Agent state is a function of the previous state and the new observation
○

● It is the hidden state of a recurrent neural network
● Never defined in terms of the “real” state of the environment (a la POMDP)



Principle #6: Control the Stream
● Agents live in rich sensorimotor streams of data

○ Observations stream into the agent
○ Actions stream out of the agent

● The agent’s actions influence the stream

● Control of features => control of the stream
● Control of the stream => control of the future
● Control of the future => can maximise any reward



Principle #7: Value Functions Model the World
Why use a value function?

● Value functions efficiently summarise/cache the future
● Reduce planning to constant-time look-up, rather than exponential lookahead
● Can be computed and learned independent of their span

Learn multiple value functions:

● To efficiently model many aspects of the world (control the stream)
○ Including subsequent state variables

● At multiple time-scales

Avoid modelling the world at primitive time-step



Principle #8: Planning: Learn from Imagined Experience
An efficient approach to planning:

● Imagine what will happen next
○ Sample trajectory of states from the model

● Learn from imagined experience
○ Using the same RL algorithms that we apply to real experience

Focus the value function approximation on the moment now



Principle #9: Empower the Function Approximator
● Differentiable network architectures are powerful tools facilitating:

○ Rich representations of state
○ Differentiable memory
○ Differentiable planning
○ Hierarchical control
○ …

● Push algorithmic complexity into the network architecture
○ Reduce complexity of the algorithm (how parameters are updated)
○ Increase expressiveness of the architecture (what the parameters do)



Principle #10: Learn to Learn

The history of AI shows a clear direction of progress:

● Generation #1: Good Old-Fashioned AI
○ Handcraft predictions
○ Learn nothing

● Generation #2: Shallow Learning
○ Handcraft features
○ Learn predictions

● Generation #3: Deep Learning
○ Handcraft algorithm (optimiser, target, architecture, …)
○ Learn features and predictions end-to-end

● Generation #4: Meta Learning
○ Handcraft nothing
○ Learn algorithm and features and predictions end-to-end


