Principles of Deep RL

David Silver

Principle #1: Evaluation Drives Progress

Objective, **quantitative** evaluation drives progress:

- The choice of evaluation metric determines the direction of progress
- Arguably the most important single decision in the course of a project

Leaderboard-driven research:

- Be sure the evaluation metric corresponds closely to the end goal
- Avoid subjective evaluation (e.g. human inspection)

Hypothesis-driven research:

- Formulate a hypothesis:
 - "Double-Q learning outperforms Q-learning because it reduces upward bias"
- Verify hypothesis under a broad range of conditions
- Compare like-for-like **not** against existing state-of-the-art
- Seek understanding rather than leaderboard performance

Principle #2: Scalability Determines Success

- An algorithm's **scalability** is its performance gradient with respect to resource
 - Given more resource, how does performance increase?
- The resource could be **computation**, **memory** or **data**
- The scalability of an algorithm ultimately determines its success
 Image
- Scalability is always (eventually) more important than the starting point
- A good algorithm is (eventually) optimal given infinite resources

Principle #3: Generality Future-Proofs Algorithms

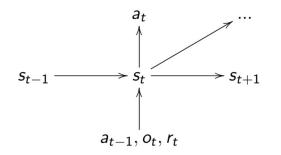
- An algorithm's **generality** is its performance across different RL environments
- Avoid overfitting to the present task
- Seek algorithms that will generalise to unknown, future environments
- We can't predict the future but:
 - Future tasks are likely to be at least as complex as current tasks
 - Difficulties encountered in current tasks will most likely increase
- Conclusion: test against a diverse but realistic set RL environments

Principle #4: Trust in the Agent's Experience

- Experience (*observations*, *actions*, *rewards*) is the data of RL
 - $\circ \quad h_t = o_1, r_1, a_2, o_2, r_2, ..., a_t, o_t, r_t$
 - Stream of experience accumulated over the course of the agent's lifetime in the environment
- Trust in experience as the sole source of knowledge
 - The temptation is always there to leverage our human expertise (human data, features, heuristics, constraints, abstractions, domain manipulations)
- Learning from experience may seem impossible
 - Accept the core problem of RL is hard
 - It is the central problem of AI
 - It is worth the effort
- Learning from experience always wins in the long run

Principle #5: **State** is Subjective

- Agents should construct their own state from their experience $s_t = f(h_t)$
- Agent state is a function of the previous state and the new observation
 - $s_t = f(s_{t-1}, a_{t-1}, o_t, r_t)$



- It is the hidden state of a recurrent neural network
- Never defined in terms of the "real" state of the environment (a la POMDP)

Principle #6: Control the Stream

- Agents live in rich sensorimotor streams of data
 - Observations stream into the agent
 - Actions stream out of the agent
- The agent's actions influence the stream

- Control of features => control of the stream
- Control of the stream => control of the future
- Control of the future => can maximise any reward

Principle #7: Value Functions Model the World

Why use a value function?

- Value functions efficiently summarise/cache the future
- Reduce planning to constant-time look-up, rather than exponential lookahead
- Can be computed and learned independent of their span

Learn multiple value functions:

- To efficiently model many aspects of the world (control the stream)
 - Including subsequent state variables
- At multiple time-scales

Avoid modelling the world at primitive time-step

Principle #8: **Planning:** Learn from Imagined Experience

An efficient approach to planning:

- Imagine what will happen next
 - Sample trajectory of states from the model
- Learn from imagined experience
 - Using the same RL algorithms that we apply to real experience

Focus the value function approximation on the moment *now*

Principle #9: Empower the Function Approximator

- Differentiable network architectures are powerful tools facilitating:
 - Rich representations of state
 - Differentiable memory
 - Differentiable planning
 - Hierarchical control
 - 0 ...
- Push algorithmic complexity into the network architecture
 - Reduce complexity of the algorithm (how parameters are updated)
 - Increase expressiveness of the architecture (what the parameters do)

Principle #10: Learn to Learn

The history of AI shows a clear direction of progress:

- Generation #1: Good Old-Fashioned Al
 - Handcraft predictions
 - Learn nothing
- Generation #2: Shallow Learning
 - Handcraft features
 - Learn predictions
- Generation #3: Deep Learning
 - Handcraft algorithm (optimiser, target, architecture, ...)
 - Learn features and predictions end-to-end
- Generation #4: Meta Learning
 - Handcraft nothing
 - Learn algorithm and features and predictions end-to-end