Principles of Deep RL

David Silver

Principle #1: Evaluation Drives Progress

Objective, quantitative evaluation drives progress:

e The choice of evaluation metric determines the direction of progress
e Arguably the most important single decision in the course of a project

Leaderboard-driven research:

e Be sure the evaluation metric corresponds closely to the end goal
e Avoid subjective evaluation (e.g. human inspection)

Hypothesis-driven research:

e Formulate a hypothesis:
o “Double-Q learning outperforms Q-learning because it reduces upward bias”
e Verify hypothesis under a broad range of conditions
e Compare like-for-like not against existing state-of-the-art
e Seek understanding rather than leaderboard performance

Principle #2: Scalability Determines Success

An algorithm’s scalability is its performance gradient with respect to resource
o Given more resource, how does performance increase?

The resource could be computation, memory or data

The scalability of an algorithm ultimately determines its success
o Image

Scalability is always (eventually) more important than the starting point
A good algorithm is (eventually) optimal given infinite resources

Principle #3: Generality Future-Proofs Algorithms

An algorithm’s generality is its performance across different RL environments
Avoid overfitting to the present task
Seek algorithms that will generalise to unknown, future environments

We can’t predict the future but:
o Future tasks are likely to be at least as complex as current tasks
o Difficulties encountered in current tasks will most likely increase

e Conclusion: test against a diverse but realistic set RL environments

Principle #4: Trust in the Agent’s Experience

e Experience (observations, actions, rewards) is the data of RL

© ht:017r17327027r27'“aataohrt
o Stream of experience accumulated over the course of the agent’s lifetime in the environment
e Trustin experience as the sole source of knowledge
o The temptation is always there to leverage our human expertise (human data, features,
heuristics, constraints, abstractions, domain manipulations)
e Learning from experience may seem impossible

o Accept the core problem of RL is hard
o ltis the central problem of Al
o lItis worth the effort

e Learning from experience always wins in the long run

Principle #5: State is Subjective

e Agents should construct their own state from their experience
o st =1(ht)

e Agent state is a function of the previous state and the new observation
o St = f(St—l, dt—1, Ot, rt)

St—1 St St+1

at

dt—1,O0¢, I't

e |tis the hidden state of a recurrent neural network
e Never defined in terms of the “real” state of the environment (a la POMDP)

Principle #6: Control the Stream

e Agents live in rich sensorimotor streams of data
o Observations stream into the agent
o Actions stream out of the agent

e The agent’s actions influence the stream

e Control of features => control of the stream
e Control of the stream => control of the future
e Control of the future => can maximise any reward

Principle #7: Value Functions Model the World

Why use a value function?

e Value functions efficiently summarise/cache the future
e Reduce planning to constant-time look-up, rather than exponential lookahead
e (Can be computed and learned independent of their span

Learn multiple value functions:

e To efficiently model many aspects of the world (control the stream)
o Including subsequent state variables

e At multiple time-scales

Avoid modelling the world at primitive time-step

Principle #8: Planning: Learn from Imagined Experience

An efficient approach to planning:

e Imagine what will happen next
o Sample trajectory of states from the model

e Learn from imagined experience
o Using the same RL algorithms that we apply to real experience

Focus the value function approximation on the moment now

Principle #9: Empower the Function Approximator

e Differentiable network architectures are powerful tools facilitating:
o Rich representations of state

Differentiable memory

Differentiable planning

Hierarchical control

o O O O

e Push algorithmic complexity into the network architecture

o Reduce complexity of the algorithm (how parameters are updated)
o Increase expressiveness of the architecture (what the parameters do)

Principle #10: Learn to Learn

The history of Al shows a clear direction of progress:

e (Generation #1: Good Old-Fashioned Al

o Handcraft predictions
o Learn nothing
e Generation #2: Shallow Learning
o Handcraft features
o Learn predictions
e Generation #3: Deep Learning
o Handcraft algorithm (optimiser, target, architecture, ...)
o Learn features and predictions end-to-end
e Generation #4: Meta Learning

o Handcraft nothing
o Learn algorithm and features and predictions end-to-end

